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In recent years, various dense retrieval methods have been developed to improve the performance of search engines with a
vectorized index. However, these approaches require a large pre-computed index and have limited capacity to memorize all
semantics in a document within a single vector. To address these issues, researchers have explored end-to-end generative
retrieval models that use a seq-to-seq generative model to directly return identifiers of relevant documents. Although these
models have been effective, they are often trained with the maximum likelihood estimation method. It only encourages the
model to assign a high probability to the relevant document identifier, ignoring the relevance comparisons of other documents.
This may lead to performance degradation in ranking tasks, where the core is to compare the relevance between documents.
To address this issue, we propose a ranking-oriented generative retrieval model that incorporates relevance signals in order to
better estimate the relative relevance of different documents in ranking tasks. Based upon the analysis of the optimization
objectives of dense retrieval and generative retrieval, we propose utilizing dense retrieval to provide relevance feedback for
generative retrieval. Under an alternate training framework, the generative retrieval model gradually acquires higher-quality
ranking signals to optimize the model. Experimental results show that our approach increasing Recall@1 by 12.9% with
respect to the baselines on MS MARCO dataset.

CCS Concepts: • Information systems→ Retrieval models and ranking.

Additional Key Words and Phrases: Model-based IR, Generative Model, Document Retrieval, Knowledge Distillation, Docid
Representation

1 INTRODUCTION
A search engine is a valuable tool for meeting people’s everyday information needs. The process of searching
begins with a query, which prompts the engine to retrieve a list of candidate documents from a large collection.
These candidates are then re-ranked to create a final list of results. The performance of the initial retrieval
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Fig. 1. Comparison of original and ranking-oriented generative retrieval. Original method trained with MLE assumes a
one-point deterministic distribution, while our method additionally considers the graded semantic relevance of irrelevant
documents to better adapt the model to ranking tasks.

stage is crucial to the overall quality of the search. The traditional method [1, 12, 13, 17, 42] for document
retrieval involves the use of an inverted index, which has been the foundation of term-based parsing for decades.
However, this method can run into issues with vocabulary mismatches [18], where different terms are used to
describe the same concept, leading to incomplete or inaccurate search results. In recent years, new dense retrieval
methods [22, 23, 25, 50, 52] have been developed to address this problem. These methods convert the semantic
information in both queries and documents into dense vectors, and then use these vectors to retrieve relevant
documents.

Although dense retrieval has been shown to be effective in practical applications, the index-based framework
requires a large index to be pre-computed on the entire corpus to support document retrieval. In addition, a
single vector has limited capacity to retain all semantics within a document. To make full use of the capabilities
of deep neural networks, several studies have explored end-to-end generative retrieval models [2, 46, 47] that
directly generate the relevant document identifier (docid). These models substitute the traditional explicit index
with a dynamic neural search index [46], thereby enabling end-to-end document retrieval through the utilization
of a seq-to-seq generative model.

Despite the significant advancements in generative retrieval models, they are commonly trained with maximum
likelihood estimation (MLE), which maximizes the predictive probability of the ground-truth docid comprised
of pre-defined tokens. However, as shown in Figure 1, such an optimization objective only encourages the
model to assign high probability to the ground-truth docid (one-point distribution), and is agnostic about the
relevance comparisons among non-golden docids [30, 44]. We argue that this objective is biased against the
goal of ranking tasks, where the estimation of graded document relevance in relation to a specific query is of
paramount importance. In light of this, we suggest building a ranking-oriented generative retrieval model through
the incorporation of relevance signals into the generation process.

The relative comparisons of semantic relevance are performed well in dense retrieval models due to their
utilization of ranking-based or contrastive optimization objectives [7, 22, 50]. Upon conducting an analysis of
both generative retrieval and dense retrieval (as detailed in Sec. 4), it has been observed that the optimization
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objectives employed in these models are inconsistent, leading to variations in the distribution of ranking results.
Specifically, generative retrieval models tend to perform more favorably at the first rank position, whereas dense
retrieval models tend to exhibit a more balanced performance across all rank positions. This observation inspires
the notion that these two retrieval paradigms can be effectively utilized in a complementary manner, with the
dense retrieval model providing the necessary relevance feedback that is missing in generative retrieval models.

Due to the heterogeneity of the two retrieval paradigms, generative retrieval models face the difficulty in
leveraging the relevance signals from dense retrieval models directly, reflected in two aspects. (1) Data mismatch.
They are trained on different data (query-docid pairs vs. query-document pairs), which leads to different document
knowledge learned by the two models. (2) Model mismatch. Different model structures (encoder-decoder structure
vs. dual encoder structure) cause different abilities to fit the training data. In order to mitigate the noise introduced
by these inconsistencies, an intermediate model, named dense docid retriever, is introduced to link the two
retrieval paradigms. As a bridge, it could distill knowledge from the dense document retrieval model through a
consistent model structure, and provide relevance feedback to the generative retrieval model within the same
document representation space.

In this paper, we introduce a Ranking-Oriented GEnerative Retrieval model (ROGER), which aims to enhance
the ability of generative retrieval to model relative semantic relevance for ranking tasks. On the basis of the
original generative retriever, two dense retrievers (i.e. a dense docid retriever and a dense document retriever) are
incorporated during the training stage. Concretely, the generative retriever receives the relevance feedback from
the dense docid retriever to train the generator to complement the MLE objective. Additionally, to enhance the
quality of relevance feedback, the dense docid retriever is further optimized through the utilization of knowledge
distillation from the dense document retriever. During the inference phase, when presented with a query, the
optimized generative retriever is utilized to generate a ranking list through constrained beam search.

We conduct experiments on three widely adopted document retrieval datasets: MS MARCO, Natural Questions,
and ClueWeb. Experimental results indicate that our ranking-oriented training strategy is applicable to a variety of
generative retrieval methods and achieves significant improvements over them. Moreover, auxiliary experiments
show that our model can combine the respective advantages of generative retrieval and dense retrieval to improve
the MRR and Recall metrics.

The paper makes several key contributions, which can be summarized as follows:

• We thoroughly examine the similarities and distinctions between generative retrieval and dense retrieval
methods. By analyzing the strengths and weaknesses of each approach, we propose utilizing dense
retrieval as a means of providing relevance feedback for generative retrieval. This integration of the two
paradigms aims to leverage the benefits of both methods and enhance the generative retrieval process.
• We introduce a novel approach for generative retrieval that incorporates relevance signals to perform

relative comparisons of different documents in ranking tasks. This ranking-oriented generative retrieval
model aims to improve the model’s ability to handle ranking tasks and enhance its overall performance.
• We present an alternate training framework that establishes a connection between the generative retrieval

model and the dense retrieval model. This framework continuously sends ranking signals from the dense
retrieval model to the generative retrieval model, enabling the generative model to learn from the ranking
feedback and improve its ranking capabilities.
• We provide experimental results that demonstrate the effectiveness of the proposed model. The model

outperforms dense and generative retrieval baselines significantly, achieving a 12.9% higher Recall@1 on
the MS MARCO dataset. This improvement demonstrates the model’s ability to effectively combine the
advantages of generative and dense retrieval methods, thereby enhancing overall retrieval performance.
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2 RELATED WORK

2.1 Sparse Retrieval
Sparse retrieval methods are widely employed in practical applications due to their efficiency and effectiveness in
information retrieval systems. These methods leverage inverted indexes and incorporate various techniques to
evaluate term importance and compute matching scores between queries and documents. Notable examples of
such techniques include the frequency-based BM25 model [42] and graph-based approaches [3, 43] that utilize
algorithms like PageRank. In recent years, representation learning [34, 40] has gained prominence and has
been extensively applied to automatically derive term weights from word embeddings [14, 20, 55]. Additionally,
contextualized text representation techniques have emerged, enabling the prediction of term importance in
methods like DeepCT [12] and HDCT [13]. These approaches leverage advanced models that can capture the
contextual meaning of terms within documents and queries. Furthermore, specific sparse representation learning
methods focused on terms have been introduced, such as SparTerm [1] and SPLADE [16, 17], aiming to enhance
text retrieval speed. These methods utilize term-based approaches to construct compact representations for
efficient retrieval while preserving retrieval effectiveness. However, a persistent challenge in sparse retrieval
methods is the issue of word mismatch, where the vocabulary used in queries may not precisely match the
vocabulary found in the document collection. To address this challenge, researchers have proposed techniques to
expand the set of possible terms for queries or candidate documents, thereby improving retrieval performance. For
instance, some methods employ query expansion [39] to augment the original query with additional terms that
are likely to improve retrieval accuracy. Similarly, document expansion [38] techniques can be employed, where
potential terms are added to the candidate documents to increase the chances of retrieving relevant information.
By incorporating word expansion techniques into sparse retrieval approaches, the retrieval system becomes
more flexible in dealing with vocabulary discrepancies and can provide more accurate results. These expansion
methods effectively increase the coverage of queries and documents, enabling the retrieval system to better
capture the underlying semantics and bridge the lexical gaps between the query and the document collection.

2.2 Dense Retrieval
Deep learning methods have revolutionized the field of information retrieval by enabling the identification of
semantic similarity between queries and documents. Unlike traditional methods that rely solely on word matching,
these deep learning techniques take advantage of neural networks to convert queries and documents into vector
representations, capturing the underlying meaning and context of the text. By representing text as vectors, it
becomes possible to calculate the similarity between queries and documents using various distance metrics, such
as cosine similarity or Euclidean distance. This allows for more accurate retrieval of relevant documents, even in
cases where the vocabulary used in the query and the document may not exactly match.

To improve the efficiency of vector-based search, several algorithms have been developed. One popular
approach is Approximate Nearest Neighbor Search (ANNS), which aims to find approximate nearest neighbors
instead of exact matches. ANNS algorithms, such as the HNSW index [31] and SPTAG [10], provide efficient
indexing and retrieval of vectors, significantly reducing the search time. Another technique used to enhance
efficiency is Product Quantization (PQ), which compresses the vector representations by dividing them into
subvectors and quantizing each subvector separately. PQ-based methods, such as OPQ [19] and JPQ [51], allow
for faster computation and storage of large-scale vector indexes.

A common approach for dense retrieval is the dual encoder architecture. In this setup, separate encoders are
used to encode queries and documents into vector representations. This approach has shown promising results in
various tasks, such as document ranking and question answering. Pre-trained language models like BERT [15]
and T5 [41] have been widely adopted in dual encoder models, providing high-quality representation vectors and
improving retrieval performance. To further enhance performance, methods based on hard negative sampling have
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been developed. Hard negative sampling involves selecting negative examples that are challenging to distinguish
from positive examples, thereby forcing the model to learn more discriminative representations. Models such as
DPR [22] and ANCE [50] leverage hard negative sampling to improve retrieval accuracy and ranking quality.
Moreover, there have been advancements in knowledge distillation techniques aimed at enhancing model training
with more pertinent signals. For instance, models such as those described by [21] and [49] advocate for the
training of dense retrieval models under the guidance of a teacher model. This method is designed to yield a
retrieval system that is both effective and efficient.

2.3 Generative Retrieval
Generative models have gained significant popularity in the field of information retrieval (IR) due to their ability to
generate relevant answers and retrieve information from large document collections. Initially, generative models
were trained to directly produce answers or entity names for specific IR tasks [6, 37]. Recent advancements have
focused on incorporating document identifiers into the generative models to enhance their retrieval capabilities.
One approach, proposed in the work of Metzler et al. [33], introduced a model-based IR framework that embeds
document identifiers into the model. This approach represents document identifiers using structured semantic
clusters and treats the transformer memory as a neural search index. By incorporating document identifiers, the
model can effectively retrieve relevant documents based on their unique identifiers.

Following this line of research, several other models have been developed, such as DSI [46, 60], NCI [47],
and DynamicRetriever [57]. These models further enhance the incorporation of document identifiers into the
generative retrieval process. They represent the document identifiers with the structured semantic clusters and
regard the transformer memory as a neural search index. Zhou et al. [58] tried keyword-based and PQ-based
identifiers and applied a three-stage training pipeline for model training. Additionally, researchers have extended
the model-based IR framework to knowledge-intensive language tasks, resulting in improved performance. Chen
et al. [8] and Bevilacqua et al. [2] explored the integration of generative models with knowledge to enhance
question-answering and entity retrieval tasks. Similarly, Chen et al. [9] proposed a model that incorporates a
knowledge corpus as a memory bank to facilitate knowledge-intensive language tasks. To cope with the challenge
of updating generative models with new documents, Mehta et al. [32] proposed a model updating mechanism
specifically designed for incorporating new documents into the generative retrieval model. This allows the model
to adapt and incorporate the latest information while maintaining its retrieval capabilities. Additionally, a series
of studies [27–29, 45, 48, 54, 56, 59] explored various methods for representing docids, aiming to enrich docid
semantics with learnable parameters.

Despite these advancements, the existingmodels that associate queries and document identifiers with generative
language models do not explicitly model the relative relevance between documents. To address this limitation, the
focus of this paper is on developing a rank-oriented generative retrieval model. This model incorporates relevance
feedback signals from dense retrieval models, which consider the relative relevance between documents. By
leveraging the feedback signals, the rank-oriented generative retrieval model aims to improve the ranking and
retrieval performance, providing more accurate and relevant results to users.

3 PRELIMINARIES
In this section, we formulate the document retrieval problem and introduce the technique of dense retrieval
and generative retrieval. Document retrieval is a fundamental task in information retrieval, aiming to retrieve
relevant documents from a large collection given a user’s query. Dense retrieval is a technique employed in
document retrieval that focuses on dense vector representations of documents and queries. Unlike traditional
sparse vector representations, dense representations encode rich semantic information and capture the contextual
meaning of the text. Dense retrieval models mainly depend on dual-encoder architectures to learn these dense
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Fig. 2. The basic framework of generative retrieval and dense retrieval.

representations. Generative retrieval is another technique used in document retrieval that leverages generative
models, such as T5 or BART, to perform retrieval. The detailed introduction is as follows.

3.1 Problem Statement
Given a query @ and a corpus � , the target of document retrieval is to return top-k ranked documents from
the corpus. To support ranking, the model should compute the relevance score between the query @ and each
document 3 in the corpus � , denoted as:

score(3, @) = 5 (3 |@), 3 ∈ � (1)

In this equation, the function 5 (3 |@) represents the model used to compute the ranking score of document 3
given the query @. Here, 3 is an element of the set � , which contains all the documents to be ranked.

3.2 Dense Retrieval
Dense retrieval encodes the query and documents separately into embeddings, and uses the similarity function,
such as inner product or cosine similarity, to compute the ranking scores. In this way, Eq. (1) can be written as:

score(3, @) = �q (3 |@) = 〈 ®-@;q , ®-3 ;q 〉, (2)

where �q denotes the dense retriever with parameters q , ®- represents embeddings encoded by the dense retriever
(e.g. BERT Encoder), and 〈, 〉 is the similarity function. Dense retrieval models are typically trained with ranking-
based or contrastive losses. Each training sample consists of a query @, a positive document 3+, and a set of
negative documents �− . The dense loss function, such as the contrastive loss, can be formalized as:

Ldense = −log
exp

(
�q (3+ |@)

)
exp

(
�q (3+ |@)

)
+

∑
3−∈�−

exp
(
�q (3− |@)

) . (3)

3.3 Generative Retrieval
Generative retrieval aims to generate the relevant docids for a given query directly with a seq-to-seq model.
The final ranking scores rely on the generation probability of docids. To represent docids, previous studies tried
various strategies such as keyword-based docids [2, 9] or semantic-based docids [46, 47]. Each docid uniquely
identifies a document in the corpus and can reflect its semantics.
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Fig. 3. Generative Retrieval vs. Dense Retrieval. Generative retrieval tends to build the bridges from the query space to
document space, while dense retrieval prefers to encode the query and document into the same space and narrows their gaps.
Given a query, generative retrieval tries to find a document along the existing bridge, and dense retrieval directly measures
the query-document relevance within the semantic space.

Assuming that 3 ′ is the identifier of the document 3 , the generative model tries to predict relevant docids with
the highest auto-regressive scores. Under this method, Eq. (1) can be written as:

score(3, @) = �\ (3 ′ |@) =
∏
8=1

�\ (3 ′8 |3 ′<8 , @), (4)

where�\ is the generative retriever, and 3 ′8 is the 8Cℎ token of the docid, 3 ′<8 represent all tokens generated before
the 8Cℎ token. The parameters \ are optimized with the standard seq-to-seq objective, i.e., maximizing the target
sequence likelihood. The generative loss function, which is the cross-entropy loss, can be defined as:

Lgen = −
∑
8=1

log�\ (3 ′8 |3 ′<8 , @), (5)

where�\ (3 ′8 |3 ′<8 , @) is the generation probability of token 3 ′8 based on the given input. Such a generative loss only
focuses on fitting the tokens of the relevant docid at each position of the decoder, without explicitly encoding the
query and candidate documents to the same space for comparing representations.

4 GENERATIVE VS. DENSE RETRIEVAL
To clarify the distinction and connection between generative retrieval and dense retrieval, we initially explore
their optimization goals before delving into an empirical comparison of their ranking results. Figure 3 visualizes
the differences between these approaches. Imagine a scenario where various query and document nodes are
dispersed throughout a space. In the case of generative retrieval, the process is akin to constructing bridges from
queries directly to their corresponding documents, enhancing the model’s ability to consistently identify and
follow dependable routes to locate the desired document when querying. Conversely, dense retrieval operates by
encoding both queries and documents into a unified space, thereby minimizing the distance between matching
(positive) query-document pairs. This methodology simplifies the task of comparing the proximity of each
document to a given query, facilitating more straightforward measurement of their relative distances.
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Fig. 4. Empirical study on ranking results of generative retrieval and dense retrieval.

4.1 Analysis of Optimization Objective
According to the loss functions of generative retrieval and dense retrieval in Eq. (3) and Eq. (5), their learning
objectives can be formalized as updating parameters \ and q to minimize the loss:

\ ∗ = argmax
\

∑
8

log �\ (3 ′8 |3 ′<8 , @)︸          ︷︷          ︸
q-d’ relevance & sequence dependencies

, (6)

q∗ = argmax
q

©«�q (3+ |@) − log
∑
3−∈�̃

exp
(
�q (3− |@)

)ª®¬ , (7)

where �̃ is the union of �− and 3+. Then, we convert the model �q into the form of similarity function 〈, 〉:

q∗ = argmax
q

(〈 ®-@;q , ®-3+;q 〉︸         ︷︷         ︸
q-d relevance

− log
∑
3−∈�̃

exp(〈 ®-@;q , ®-3− ;q 〉)︸           ︷︷           ︸
comparisons

). (8)

Finally, we can summarize two differences from the optimization objectives of generative retrieval and dense
retrieval. (1) Data mismatch. In terms of relevance modeling, generative retrieval puts more emphasis on the
relationship between query and docid, while dense retrieval concentrates on the query-document matching.
(2) Model mismatch. Generative retrieval models the sequence dependencies between docid tokens, but dense
retrieval focuses on capturing relative comparisons as ranking signals. Concretely, the generative retrieval
approach concentrates on creating negative samples at the level of individual tokens, considering every possible
combination of tokens that isn’t the correct match as a negative example. On the other hand, dense retrieval
methods prioritize the use of document-level negative samples, particularly emphasizing the importance of
selecting high-quality negative instances that are closely related to the query. These two differences give each
approach its own set of benefits and drawbacks. To further explore the impact of different optimization objectives
on the ranking results, we perform an empirical study as follows.
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generator and the dense docid retriever, so as to inject ranking signals into the generative retriever.

4.2 Empirical Study on Ranking Results
Based on the above analysis, we realize that the generative and dense retrieval models have certain differences in
learning objectives. Here, we empirically study whether these differences would be reflected in their ranking
results.
Experimental Setup. We choose DPR [22] and Ultron [58] as the dense and generative retrieval model

respectively, and investigate their ranking results on the development set of the Natural Question dataset [24].
Concretely, for each query, we retrieve the top 20 documents and count the number of relevant documents
appearing in different rank positions. Additionally, we calculate the average ranking score of relevant documents
at each position. To better show the tendency, we normalize generation probabilities and relevance matching
scores to the same scale (0-1) with sigmoid function for comparison.

Observations. From Figure 4, we can observe that: (1) The generative retrieval model has a higher likelihood
of placing the correct document at the top spot, while the dense retrieval model is relatively more balanced in
every rank position. (2) The relevant documents at the first position are given very high scores by the generative
model, and the scores for the following positions decrease rapidly. By contrast, the ranking score curve of dense
retrieval is smoother. These two findings are consistent with our analysis of the optimization objectives of the two
retrieval paradigms. As demonstrated in Equation (8), the optimization goal of the generative retrieval model is
solely to give high probability to the correct document identifier. This approach presumes a distribution focused
on a single point, resulting in both high accuracy and confidence at the first position. In contrast, the optimization
objective of dense retrieval model (shown in Equation (9)) captures the nuances between relevant documents and
hard negative documents, allowing it to measure the relative relevance comparisons between different documents.
As a result, its curve is smoother and it performs fairly well at each position.

Overall, generative retrieval and dense retrieval learn associations between queries and documents through
different optimization objectives, and show different distributions over the ranking results. This motivates us to
add the learning of relevance comparisons to the optimization objective of the generative retrieval model, so as
to enhance its performance on the ranking tasks.
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5 RANKING-ORIENTED TRAINING METHOD
Based on the findings above, the generative retrieval model, which is trained with the standard MLE method,
does not fully consider relative comparisons between irrelevant documents. On the basis of this, we propose a
ranking-oriented training approach that leverages the relevance feedback from dense retrieval to improve the
performance of original generative retrieval model.

The overall training framework is depicted in Figure 5. The first step is to link the generative retriever and the
dense retriever with a dense docid retriever. Next, the generative retriever is optimized with relevance feedback
from the dense docid retriever. Then, the dense docid retriever is updated with knowledge distillation from the
dense document retriever. The details are given below.

5.1 Basic Settings
To start, we establish the foundational parameters for the generative retrieval model. Our ROGER framework, in
theory, is adaptable to any generative retrieval models, regardless of the type of docids they utilize. Within the
scope of this study, we examine two distinct models: NCI [47], which employs semantic cluster-based docids, and
Ultron [58], which uses string-based docids. The T5-base [41] serves as the primary architecture for these models,
but it’s noteworthy that it can be substituted with other encoder-decoder models, such as BART [26], offering
flexibility in the underlying technology.

5.2 Linking the Two Retrieval Paradigms
As we discussed in Sec. 4, there are two main differences in the optimization objectives of generative retrieval and
dense retrieval: data mismatch and model mismatch. These inconsistencies can lead to noisy relevance feedback
and hinder the training of the generative retrieval model. To cope with this problem, we propose to add an
intermediate model to link the two paradigms. This model should have the same architecture as the dense retrieval
model, but is trained on the same data as the generative retrieval model, namely the dense docid retriever. As a
bridge, it can not only learn document knowledge from the dense document retriever, but also provide unbiased
relevance feedback to the generative retriever.

Given the training dataD, which consists of a series of relevant query-document pairs, we represent documents
as identifiers to construct a set of query-docid pairs D′. Following previous methods [2, 46], identifiers can be
represented as a sequence of semantic cluster ids or several keywords. Based on D and D′, we first warm up the
generative retriever and two dense retrievers with Eq. (5) and Eq. (3). Next, we attempt to inject the ranking
signals hidden in the dense docid retriever into the generative retriever by alternately updating their parameters.

5.3 Optimizing the Generative Retriever with Relevance Feedback
To focus on the ranking task, we leverage the dense docid retriever to provide the relative relevance scores over
docids. Since it is intractable to enumerate all the candidate docids, we only require the generative retriever to
accurately measure the relevance of the most probable candidate docids. Concretely, as shown in Algorithm 1,
for each query @, we generate a set of candidate docids �@ , which is its own beam search results.

Over the candidate docids, there are two types of relevance feedback that may be useful for ranking. (1)
Relevance to the query: We compute the matching scores between the query @ and docids in�@ as the feedback;
(2) Relevance to the ground-truth : The matching scores between the ground-truth docid 3̂ ′ and docids in �@

are fed to the generative retriever. The ranking logits of these two types of relevance feedback are denoted as:

Φ@,3 ′ =
exp(�U (3 ′ |@))∑

3 ′∈�@
exp(�U (3 ′ |@))

,Φ
3̂ ′,3 ′ =

exp(�U (3 ′ |3̂ ′))∑
3 ′∈�@

exp(�U (3 ′ |3̂ ′))
,

ACM Trans. Inf. Syst.

 



ROGER: Ranking-oriented Generative Retrieval • 11

Algorithm 1 Generative Language Model with Constrained Beam Search
1: Input: Language model !" , starting token ( , maximum sequence length !, beam width �, constraints � ,

input query @, number of sequences =
2: Output: Generated sequences �@

3: & ← {[(], 1.0} {Initialize beams with starting token and initial score}
4: �@ ← [] {Initialize empty generated sequences}
5: while �@ is not complete and sequence length < ! do
6: & ′ ← [] {Initialize empty set for next iteration}
7: for all ((8 , %8 ) in & do
8: �8 ← Apply constraints to (8
9: ,8 ← Generate next words from !" given input query @ and context �8

10: for all (F, ?) in,8 do
11: (new ← (8 + [F]
12: %new ← %8 × ?
13: & ′ ← & ′ ∪ {((new, %new)}
14: end for
15: end for
16: & ← Select top-� beams from & ′ based on scores
17: �@ ← Extract top-= sequences from &

18: end while
19: return �@

where �U denotes the dense docid retriever. After receiving the relevance feedback from �U , the generative
model is encouraged to assign higher estimated probabilities to more relevant docids through a ranking-oriented
loss. To achieve this goal, following [49], we choose four types of ranking losses as the ranking-oriented learning
objective for ranking order preservation. Formally, assuming that the predicted ranking scores of generative
retriever �\ over candidate documents are defined as:

Ψ@,3 ′ =
exp(�\ (3 ′ |@))∑

3 ′∈�@
exp(�\ (3 ′ |@))

,

we regard the relevance Φ@,3 ′ or Φ3̂ ′,3 ′ as the teacher score to optimize the generative retriever. We investigate
several potential ranking losses as follows:
- Margin Ranking Loss is a loss function commonly used in ranking tasks, where the goal is to learn a

ranking model that can order items or instances based on their relevance or preference. The margin ranking loss
encourages the model to correctly rank relevant items higher than irrelevant items by a certain margin. Given
the teacher score, we construct a set of docid pairs (3 ′+, 3 ′−) as the target to optimize the generative retriever �\ .
The ranking loss is defined as:

Lrank-margin = argmax
\

max(0,margin − Φ�\

@,3 ′+
+ Φ�\

@,3 ′−
) (9)

where the docid pair (3 ′+, 3 ′−) means the docid 3 ′+ is more relevant to the query @ than the docid 3 ′− . The hyper-
parameter margin is set to 0 in experiments.
- Mean Square Error (MSE) is a widely used metric in statistics and machine learning for evaluating the

quality of a regression model. Given the query @, it measures the average squared difference between the scores
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predicted by the dense model and the generative model:

L@

rank-mse = argmin
\

∑
3 ′∈�@

| |Ψ@,3 ′ − Φ@,3 ′ | |,L3
rank-mse = argmin

\

∑
3 ′∈�@

| |Ψ@,3 ′ − Φ3̂ ′,3 ′ | |, (10)

In addition to above pointwise and pairwise ranking losses, we also select several listwise losses as ranking losses,
which are shown to be effective in previous studies [4, 5].

- KL-Divergence is a measure of the difference between two probability distributions. It quantifies how one
distribution differs from another, providing a measure of the information lost when one distribution is used to
approximate another. Formally, as the ranking loss, it can be expressed as:

L@

rank-kldiv = argmax
\

∑
3 ′∈�@

Φ@,3 ′ log
Φ@,3 ′

Ψ@,3 ′
,L3

rank-kldiv = argmax
\

∑
3 ′∈�@

Φ
3̂ ′,3 ′ log

Φ
3̂ ′,3 ′

Ψ@,3 ′
. (11)

- ListNet is a learning-to-rank algorithm that aims to improve the effectiveness of rankingmodels in information
retrieval tasks. It is a widely used function for ranking order preservation [7]. The cross-entropy is minimized for
matching scores of the dense docid retriever �U and generation probabilities of the generative retriever�\ over
�@ :

L@

rank-listnet = argmax
\

∑
3 ′∈�@

Φ@,3 ′ logΨ@,3 ′ ,L3
rank-listnet = argmax

\

∑
3 ′∈�@

Φ
3̂ ′,3 ′ logΨ@,3 ′ . (12)

Both KL-divergence and ListNet methods rely on capturing the listwise similarity between the teachers and
students in the context of knowledge distillation. Notably, these approaches naturally highlight the similarities
between the top-ranked documents by both functions. This emphasis on the top-ranked documents ensures that
knowledge distillation remains consistent with the evaluation metrics used in information retrieval tasks.

Finally, we combine the generative loss and the ranking loss to train the model:

Lmul = (1 − W)Lgen + WLrank, (13)

where W represents the weight assigned to the ranking loss. The term Lrank can utilize any of the ranking losses
previously discussed, with the experimental results for different ranking losses detailed in Table 4.

The generative loss and the ranking loss focus on modeling the associations between queries and documents
from different perspectives and they can effectively complement each other. After this optimization loop, ranking-
oriented signals are transmitted to the generative retriever, so as to enhance its performance on the ranking
tasks.

5.4 Optimizing the Dense Docid Retriever with Knowledge Distillation
Intuitively, a more accurate dense docid retriever has the potential to provide improved relevance feedback.
However, a model that is solely trained on the query-docid data may not take full advantage of the available
document information. To address this limitation, we propose an optimization approach that involves distilling
document knowledge from the dense document retriever.

In our framework, we denote the dense docid retriever as �U and the dense document retriever as �q . Given a
candidate docid 3 ′ in the set �@ (which represents the candidate documents for a given query @), we compute
the ranking score for the corresponding document 3 and the query @ using �q . This ranking score reflects the
relevance of the document to the query.

To optimize the dense docid retriever �U , we apply a knowledge distillation loss that minimizes the discrepancy
between the ranking score distribution of �U and �q . This knowledge distillation loss is defined as follows:
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Algorithm 2 Iterative training of ROGER
Input: Generative retriever �\ , Dense docid retriever �U , Dense document retriever �q , Training data D
1: Initialize �\ , �U , �q from the pre-trained language models
2: D′← Represent documents as identifiers on D
3: Warm up �\ , �U on D′, warm up �q on D
4: while model has not converged do
5: for training steps of �\ do
6: �@ ← Generate candidates by �\ (·|@) with beam search
7: (�U

← Get the relevance feedback by �U on �@

8: Update parameters of �\ with Eq. (13)
9: end for

10: for training steps of �U do
11: �@ ← Generate candidates by �\ (·|@) with beam search
12: (�q

← Compute the ranking scores by �q on �@

13: Update parameters of �U with Eq. (14)
14: end for
15: end while

Lkd = argmax
U

∑
3 ′∈�@

Φ@,3 ′ log
Ω@,3

Φ@,3 ′
, (14)

where Φ@,3 ′ represents the ranking score of the candidate docid 3 ′ computed by the dense docid retriever �U ,
and Ω@,3 represents the ranking score of the corresponding document 3 and query @ computed by the optimized
dense document retriever �q .

Importantly, since �U and �q share a consistent model architecture, it becomes possible to distill document
knowledge into the docids as comprehensively as possible. In other words, the dense docid retriever can benefit
from the document-level information extracted by the dense document retriever. It is worth noting that different
docids may have varying capacities to retain and represent document-level information. Exploring the upper
limit of document information that different docids can retain is an interesting direction for future research.

5.5 Summary
Given an original generative retriever�\ , ROGER updates its parameters with the ranking-oriented loss following
three steps. First, candidate docids are generated by �\ using beam search. Second, it updates the parameters \
based on the relevance feedback from the dense docid retriever �U . Third, for a more accurate relevance feedback,
it updates the parameters U by distilling the document knowledge from the dense document retriever. We present
the iterative training framework in Algorithm 2. Note that our proposed ROGER is an incremental training
method and applicable to a variety of existing generative retrieval models.

6 EXPERIMENTAL SETTINGS

6.1 Datasets and Evaluation Metrics
Datasets. We perform our experiments on three commonly used benchmarks for document retrieval, Natural
Questions 320k [24], MS MARCO Document Ranking [35], and ClueWeb [11].

NaturalQuestions (NQ) contains questions from real users andWikipedia articles that are meant to answer them.
It consists of approximately 231k articles with 307k training pairs and 7.8k test queries. We remove unnecessary
HTML tags and extract the title, abstract, and content from each Wikipedia article during the dataset processing
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process. Different from previously done in [47], we remove duplicated documents based on the URL of each
article instead of the title, which is more reasonable and in line with practical application.
MS MARCO Document Ranking is a large-scale dataset focused on the document ranking task. It consists of

3.2 million documents and a training set with 367,013 queries. As previously done in [58], we construct a set of
candidate documents with approximately 320k articles based on the labeled documents. After that, the same data
processing procedure as Natural Question 320K is applied.

ClueWeb is a multi-graded relevance dataset, which comprises a web archive consisting of more than 50 million
documents sourced from the TREC Web Tracks 2009-2011. We construct a subset by random sampling 300K
documents for experiments.

Metrics. We employ the widely used metrics Recall@N (R@N) and Mean Reciprocal Rank (MRR) for evaluating
the document retrieval performance on binary relevance dataset, and employ normalized discounted cumulative
gain (NDCG@N) and expected reciprocal rank (ERR) for multi-graded relevance dataset.

Table 1. Overall results of sparse retrieval, dense retrieval, and generative retrieval on binary relevance dataset. Document
Rep. indicates the method to represent document semantics. The best results are shown in bold and the best baselines
are underlined. “‡” or “†” indicates the result is significantly better than all baselines or the original generative model with
paired t-test at p < 0.05 level.

Model Document Rep.
MS MARCO Natural Questions

R@1 R@5 R@10 MRR@10 R@1 R@5 R@10 MRR@10

Sparse Retrieval

BM25 sparse terms 0.1894 0.4282 0.5507 0.2924 0.1406 0.3691 0.4793 0.2360
DocT5Query sparse terms 0.2327 0.4938 0.6361 0.3481 0.1907 0.4388 0.5583 0.2955

Dense Retrieval

RepBERT dense vector 0.2525 0.5841 0.6918 0.3848 0.2257 0.5220 0.6565 0.3513
Sentence-T5 dense vector 0.2727 0.5891 0.7215 0.4069 0.2251 0.5200 0.6512 0.3495
DPR dense vector 0.2908 0.6275 0.7313 0.4341 0.2278 0.5344 0.6858 0.3592
ANCE dense vector 0.2965 0.6343 0.7428 0.4409 0.2454 0.5421 0.6908 0.3688

Generative Retrieval

DSI semantic cluster 0.2574 0.4358 0.5384 0.3392 0.2742 0.4726 0.5658 0.3431
DSI-QG semantic cluster 0.2882 0.5074 0.6226 0.3845 0.3017 0.5320 0.6637 0.3885
SEAL n-grams 0.2758 0.5247 0.6101 0.3768 0.2930 0.5412 0.6853 0.4034
NCI semantic cluster 0.2954 0.5799 0.6728 0.4046 0.3269 0.5582 0.6920 0.4284
Ultron title + url 0.2982 0.6039 0.6831 0.4253 0.3378 0.5420 0.6705 0.4251

ROGER-NCI semantic cluster 0.3061‡ 0.5902† 0.6878† 0.4202† 0.3320† 0.5634‡ 0.6980‡ 0.4345‡
ROGER-Ultron title + url 0.3307‡ 0.6393‡ 0.7513‡ 0.4635‡ 0.3590‡ 0.5559† 0.6986‡ 0.4492‡

6.2 Baselines
For comparison, we select three classes of models as baselines.

(1) Sparse Retrieval models are used to evaluate the query-document relevance by considering the frequency and
importance of the query terms within each document. We select two classic methods as baselines. The BM25 [42]
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Table 2. Overall results on multi-graded relevance dataset. Document Rep. indicates the method to represent document
semantics. The best results are shown in bold and the best baselines are underlined. “‡” or “†” indicates the result is
significantly better than all baselines or the original generative model with paired t-test at p < 0.05 level.

Model Document Rep.
ClueWeb

NDCG@5 NDCG@10 NDCG@20 ERR@20

Sparse Retrieval

BM25 sparse terms 0.3095 0.2987 0.2900 0.1634
DocT5Query sparse terms 0.2485 0.2169 0.1957 0.0985

Dense Retrieval

RepBERT dense vector 0.3149 0.3041 0.2917 0.1996
Sentence-T5 dense vector 0.3031 0.3002 0.2964 0.1989
DPR dense vector 0.3137 0.3104 0.3091 0.2084
ANCE dense vector 0.3292 0.3263 0.3235 0.2171

Generative Retrieval

DSI semantic cluster 0.2405 0.2389 0.2372 0.1372
DSI-QG semantic cluster 0.3267 0.3159 0.3067 0.2140
SEAL n-grams 0.3220 0.2987 0.2752 0.1566
NCI semantic cluster 0.3340 0.3241 0.3157 0.2275
Ultron title + url 0.3358 0.3287 0.3156 0.2288

ROGER-NCI semantic cluster 0.3397† 0.3324† 0.3268† 0.2371†
ROGER-Ultron title + url 0.3627‡ 0.3587‡ 0.3541‡ 0.2421‡

method incorporates the tf-idf feature to determine term weights, while DocT5Query [38] expands a document
with queries predicted by a T5 model [41].

(2) Dense Retrieval models embed the query and the document into separate vectors and calculate their similarity.
RepBERT [53] and Sentence-T5 [36] are two basic baselines with BERT encoder and T5 encoder respectively.
DPR [22] and ANCE [50] are two stronger baselines that are trained with hard negatives.

(3) Generative Retrieval models have been devised for document retrieval recently.DSI [46] is the first generative
retrieval model which clusters all documents into a decimal tree and uses the paths as document identifiers. Based
on it, SEAL [2] uses every n-gram within a passage as a potential identifier and creates a FM-Index to retrieve
documents. DSI-QG [60] and NCI [47] add a query generation module for data augmentation. Ultron [58] uses
different types of docid for generation. We implement the Ultron-URL variant as the baseline. ROGER is our
proposed model and we regard Ultron and NCI as the original generative retrieval models respectively to test
the performance. Note that for all models, we consistently choose T5-base as the backbone and deduplicate
documents with URL as the corpus to ensure fair comparison, which may cause discrepancies with the results of
the original paper.

6.3 Implementation Details
Warming up. For the generative retriever, we leverage the pre-trained model T5 [41] as the backbone and update
the parameters following existing models, such as NCI [47] or Ultron [58]. For the dense retriever, which is a
dual encoder structure, it is trained with a contrastive loss over hard negatives following [22]. To ensure the
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consistency, we also use the T5 tokenizer for word segmentation and apply the T5 encoder to learn the dense
vectors.
Training and inference. The complete training of the model is an iterative update process. For each iteration, we
generate 8 candidate docids by the generative retriever with beam search. During the training of the generative
retriever, the weight of ranking loss W is set to 0.9. We set the learning rate as 1e-4 and the batch size as 32 (per
GPU). During the training of the dense docid retriever, the batch size is set to 32 and the learning rate is 3e-5.
For inference, we apply the constrained beam search to ensure the validity of the generated docids. Due to the
memory and time overhead of beam search, we choose a maximum of 20 for the beam size. All experiments
are conducted using 4 NVIDIA A100 GPUs. During the warming up phase, we allocate 12 hours to warm up
the generative retriever and 6 hours for the dense retriever. In the ranking-oriented optimization phase, each
complete loop (generator + dense retriever) takes approximately 4 hours. During the inference phase, a single
GPU is used, and with the beam size set to 20, each query takes about 0.3 seconds.

7 EXPERIMENTAL RESULTS

7.1 Overall Performance
The overall results of models are listed in Table 1 and Table 2. Some findings are summarized as follows.

(1) The comparison of original and our ranking-oriented generative retrieval. No matter which genera-
tive retrieval model is used to initialize the model, ROGER achieves better performance in terms of all metrics
across the three datasets, which shows the effectiveness of our ranking-oriented training strategy. Compared to
Ultron, ROGER improves the performance by over 8.98% on MRR@10 on MS MARCO dataset. For NQ dataset,
ROGER outperforms NCI by over 1.42% on MRR@10. These findings strongly suggest that the incorporation of
ranking signals into traditional generative retrieval is a highly promising approach for enhancing performance in
ranking tasks.

(2) The comparison of MS MARCO and NQ datasets. On MS MARCO dataset, the improvement brought by
the ranking-oriented training strategy is more obvious, resulting in 8.98% and 3.85% improvement on MRR@10
over Ultron and NCI, respectively. However, the improvement percentage for the NQ dataset is comparatively
lower, registering at 5.66% and 1.42%. A possible reason is that dense retrieval methods have comparable or even
superior performance with generative retrieval on MS MARCO dataset, but they perform poorly on NQ dataset.
Intuitively, a more robust dense model would be expected to provide higher quality ranking signals.

(3) The comparison of different evaluation metrics. Compared with dense retrieval, original generative
retrievalmodels tend to exhibit superior performance at R@1, but exhibit inferior results at R@10. By incorporating
ranking signals from dense retrieval into the optimization of the generative retriever, the improvement on R@10
is more obvious than on R@1. This highlights that the integration of ranking loss into the optimization process
of the generative model effectively addresses its shortcomings in ranking tasks, while maintaining its strengths.

(4) The comparison of ROGER-Ultron and ROGER-NCI. The superiority of ROGER over Ultron is pro-
nounced on both datasets. The primary distinction between these two generative retrieval models lies in their
docid representations. Ultron utilizes natural language, such as title and URL, while NCI employs a string of
IDs with semantic information. In general, the dense retrieval model works on query text and document text.
Therefore, the natural language-style docid is more suitable for knowledge distillation, resulting in better relevance
feedback to the generative retriever.

In summary, these results indicate that our ranking-oriented training strategy, which incorporates
ranking signals from dense models for model training, can enhance the performance of the original
generative retrievers on ranking tasks.
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Table 3. Performance comparison with different relevance feedback and scoring methods. (doc retriever: w/o. dense docid
retriever; docid retriever: w/o. dense document retriever; kd: knowledge distillation; BLEU/ROUGE: w/o. two dense retrievers)

Feedback Scoring Method
MS MARCO Natural Questions

R@1 R@5 R@10 MRR@10 R@1 R@5 R@10 MRR@10

No feedback (Ultron) - 0.2982 0.6039 0.6831 0.4253 0.3378 0.5420 0.6705 0.4251
Query relevance doc retriever 0.3152 0.6301 0.7408 0.4502 0.3514 0.5497 0.6869 0.4418
Query relevance docid retriever 0.3216 0.6321 0.7456 0.4546 0.3558 0.5531 0.6931 0.4457
Query relevance docid retriever (kd) 0.3307 0.6393 0.7513 0.4635 0.3590 0.5559 0.6986 0.4492
Ground-truth relevance BLEU 0.3300 0.6106 0.6927 0.4461 0.3511 0.5450 0.6614 0.4346
Ground-truth relevance ROUGE 0.3294 0.6002 0.6679 0.4401 0.3532 0.5421 0.6586 0.4322
Ground-truth relevance doc retriever 0.3096 0.6201 0.7112 0.4419 0.3502 0.5485 0.6816 0.4383
Ground-truth relevance docid retriever 0.3188 0.6320 0.7283 0.4517 0.3539 0.5507 0.6898 0.4423
Ground-truth relevance docid retriever (kd) 0.3294 0.6445 0.7460 0.4623 0.3576 0.5541 0.6953 0.4470

Table 4. Performance comparison with different ranking losses. Margin Ranking loss takes advantage of the order signals
and optimizes the model in a pairwise manner, while the other three losses fit the ranking logits in a pointwise (MSE) or a
listwise (KL-divergence & ListNet) manner.

Ranking Loss Information
MS MARCO Natural Questions

R@1 R@5 R@10 MRR@10 R@1 R@5 R@10 MRR@10

No Ranking Loss (Ultron) - 0.2982 0.6039 0.6831 0.4253 0.3378 0.5420 0.6705 0.4251
Margin Ranking Loss ground-truth 0.2541 0.5298 0.5977 0.3657 0.2794 0.4783 0.5986 0.3503
Margin Ranking Loss ranking order 0.2929 0.6002 0.7031 0.4219 0.3358 0.5445 0.6813 0.4250
Mean Square Error ranking logits 0.3190 0.6197 0.7278 0.4431 0.3485 0.5440 0.6838 0.4376
KL-divergence ranking logits 0.3255 0.6380 0.7421 0.4586 0.3594 0.5541 0.6970 0.4483
ListNet (ROGER-Ultron) ranking logits 0.3307 0.6393 0.7513 0.4635 0.3590 0.5559 0.6986 0.4492

7.2 Study of Relevance Feedback Strategy
In the model training of ROGER, an important step is to receive relevance feedback signals from the dense docid
retriever. As stated in Sec 5.3, there are two types of relevance: query relevance and ground-truth relevance.
For both, we experiment with either a standalone dense document retriever or a pure dense docid retriever for
scoring, aside from the dense docid retriever that’s improved through knowledge distillation. In addition, for
the ground-truth relevance, we try two other metrics widely used in dialog systems, BLEU and ROUGE, as the
feedback.

The results are shown in Table 3. It can be observed that removing either the dense document retriever or dense
docid retriever leads to a decline in ranking results. This highlights the necessity of the intermediate model and
the effectiveness of knowledge distillation. Furthermore, leveraging the feedback of standalone docid retriever is
better than directly using the ranking signals from the dense document retriever. It shows that the docid retriever
can provide more suitable relevance feedback for model training. This is in line with our conjecture about data
mismatch. When comparing the two types of relevance feedback, we find that using query relevance as ranking
signals performs slightly better than using ground-truth relevance. A possible reason is that the query relevance
is consistent with the goal of the final document retrieval task. Another interesting finding is from the scoring
methods of BLEU and ROUGE. They bring significant improvement over no feedback scenarios on R@1, but
the performance on R@10 even gets worse. This implies that if we choose a type of relevance feedback without
ranking signals, the imbalance in the performance of each ranking position of the model will be exacerbated.
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Fig. 6. Performance with different ranking loss weights and the number of candidate docids. The dashed line is the results of
Ultron.

7.3 Influence of Different Ranking Losses
When receiving relevance feedback from the dense docid retriever, leveraging these signals to optimize the
model remains a challenge. Based on this consideration, we further explore the impact of different ranking
losses on model performance. Concretely, we choose four different loss functions, Margin Ranking Loss, Mean
Square Error, KL-divergence, and ListNet. Margin Ranking Loss aims to learn the relative order between any two
documents. There are two ways to construct document pairs: (a) the ground-truth docid with a random negative;
(b) leveraging the ranking order from the dense docid retriever. The other three ranking losses aim to narrow
the difference between two distributions, which distill the ranking logits of the dense docid retriever into the
generative model.

The comparisons are shown in Table 4. It can be observed that different ranking losses do lead to distinct
effects. The overall performances from emulating ranking logits feedback (KL-divergence, ListNet, MSE) are
comparatively better than those from learning the pairwise order feedback (Margin Ranking Loss). This indicates
that ranking logits can preserve more ranking signals required by the generative retriever. Particularly, ListNet
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Fig. 7. Study of learning curves on MS MARCO.

and KL-divergence, which force the consistency of distribution between generation probabilities and ranking
logits, are better than MSE, which focuses on consistency of ranking scores. Besides, optimizing the model with
Margin Ranking Loss causes a severe drop when just using ground-truth information to construct training pairs.
By contrast, the dense model provides the ranking order between any two candidates, which brings a boost on
R@10.

7.4 Effect of Hyper-parameters
When optimizing the generative retrieval model, the ranking loss weight and the size of candidates are two
important hyper-parameters in our framework. To investigate their impact, we train our model with different
settings and test their performance. Specifically, we set the ranking loss weight W in Eq. 13 from 0 to 1 with an
interval of 0.1 to test the model performance on each evaluation metric. Limited by the memory cost, we set the
maximum size of candidates to 8, and observe changes in performance as the number of candidates increasing.
The results are shown in Figure 6.

The ranking loss weight determines the ratio of the generative loss and the ranking loss for each parameter
update. It can be seen that a larger ranking loss weight leads to better ranking performance. However, when W
increases to 1, which means only the ranking loss plays a role, the model performance will deteriorate instead.
This shows that on a adequately trained generative retrieval model, appropriately increasing W can help it learn
more ranking-oriented signals. But if it relies entirely on the ranking loss, the model’s training objectives and
inference will be inconsistent, thus leading to performance degradation. Considering the performance on each
metric, W = 0.9 is the best choice for our framework.

As for the size of candidates, a larger number of candidates would allow more candidates to be considered
in relevance feedback, thus increasing the upper bound of the performance. It can be observed that the overall
trend of the curve supports this conjecture, but not exactly a linear growth relation. Specifically, the increase
in performance is more significant when it comes to R@10, which indicates that the comparison between non-
golden candidate docids helps the generative model learn more signals suitable for ranking tasks. Considering
the trade-off between resource consumption and model performance, we sample 8 candidates in each iteration.
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7.5 Study of Learning Curves
In our approach, we aim to enhance the performance of the generative retrieval method by continuously training
the model parameters that have been warmed up using the original method. To evaluate the effectiveness of our
proposed method, ROGER, we conducted experiments on Ultron and measured its performance using the Mean
Reciprocal Rank at 10 (MRR@10) metric on the MS MARCO dataset. We also compared the performance of the
dense docid/document retriever throughout the training process.

Figure 7 illustrates the performance curves of Ultron and the two dense retrievers during the warming-up
phase. As the training epochs progress, both Ultron and the dense retrievers show concurrent improvements in
performance. Eventually, they achieve a comparable level of performance. This observation suggests that the
initial warming-up phase effectively trains Ultron to perform competitively with the dense retrievers. However,
upon implementing ROGER, which incorporates ranking signals from the two dense retrievers into Ultron, we
observed a further improvement in performance. In fact, the performance of Ultron with ROGER surpassed that
of the dense document model. This outcome serves as evidence that our approach successfully combines the
advantages of both retrieval and dense paradigms, and enhances the model’s ability to handle ranking tasks. By
leveraging information from the dense retrievers, ROGER enhances Ultron’s ranking capabilities and improves
its overall performance. Additionally, we found that the model quickly reaches its best performance after two
iterations with ROGER. This observation highlights the potential of our method in terms of convergence rate. The
ability to achieve optimal performance quickly is beneficial in real-world applications where efficiency is crucial.

7.6 Study of Ranking Results
To provide a clearer comparison between our ranking-oriented training method and the original generative
retriever, we conducted an analysis on the development set queries. We divided the queries into two groups based
on Ultron’s performance compared to the DPR model at each ranking position. One group consisted of queries
where Ultron outperformed the DPR model, and the other group consisted of queries where Ultron performed
worse. We then evaluated ROGER’s performance on these two groups of queries, using Ultron’s performance
with the original generative model as the baseline. The results of this analysis are presented in Figure 8.

The results indicate that the generative retrieval and dense retrieval models perform differently on different
queries. At each rank position, except the first, there is a chance for the dense retrieval model to outperform the
generative retrieval model. This suggests that the two retrieval paradigms have complementary strengths and
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weaknesses. For the group of queries where the generative retrieval model performs better, ROGER achieves
similar performance to the original generative model.This outcome suggests that ROGER preserves the advantages
brought by the generative paradigm and does not significantly compromise the performance on queries where
the generative model is already strong. A possible reason is that the generative retriever tends to have a high
confidence in the correct documents for these particular queries, which means it is less susceptible to the influence
of potentially noisy feedback from the dense retriever. In contrast, for the group of queries where the dense
retrieval model performs better, ROGER clearly outperforms the baseline. This result demonstrates that ROGER
can effectively learn the ranking signals of the dense model while maintaining its own advantages derived from
the generative paradigm. By incorporating ranking signals, ROGER enhances its ability to handle queries that are
better suited for the dense retrieval approach.

7.7 Discussion
The above experiments demonstrate the effectiveness of our proposed model. In order to further understand the
advantages of this method, we discuss the following three aspects:
• What additional knowledge does the dense model provide for the generative retriever to make it work

better?
In original generative retrieval, the optimization objective only maximizes the generation ability of the relevant

docid, which is a one-point distribution. In ROGER, it assumes a non-deterministic distribution in which other
candidate docids are also assigned probability mass according to their relevance. The relative relevance over
candidate docids, which is crucial in ranking tasks, can be regarded as the additional knowledge provided by the
dense model.
• Why is using a docid retriever to provide relevance feedback better than using a document retriever

directly?
The dense docid retriever acts as a bridge, connecting the two heterogeneous models. Since docid and document

text belong to two different spaces, directly using the dense document retriever to provide relevance feedback is
noisy. Therefore, we need a model that belongs to the docid space to provide the ranking signals. At the same time,
in order to reduce the information loss from document text to docid, this model can learn document knowledge
from the dense document retriever through knowledge distillation. Detailed experimental comparisons are
presented in Sec. 7.2.
• In the era of large language models, will generative retrieval replace dense retrieval?

In the era of large language models, both generative retrieval and dense retrieval techniques continue to be
valuable and have their own strengths and applications. It is unlikely that generative retrieval will completely
replace dense retrieval, but rather they will coexist and complement each other in various scenarios. Generative
retrieval excels at generating contextually relevant and coherent documents based on a given query or prompt,
while dense retrieval excels at capturing semantic similarities between queries and documents, emphasising on
efficient similarity matching.

8 LIMITATIONS
Despite the progress achieved through ROGER in the realm of generative retrieval, certain challenges persist
that need to be addressed. A primary concern is the scalability of the model in the context of internet-scale data
repositories. As the size of the data corpus grows, it necessitates a corresponding increase in the model’s capacity.
The complex interplay between the size of the corpus and the requisite capacity of the model is an area that
requires further investigation. Another significant limitation is the updating mechanism of the model-based
indexer. The current system lacks an efficient method for integrating new documents without undergoing a
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complete retraining process. This is a critical issue, as the ability to seamlessly add fresh content is crucial for
maintaining an up-to-date and relevant retrieval system. Future research should prioritize the development of
strategies that allow for the incremental updating of the model. Such advancements are crucial for enhancing the
utility and adaptability of ROGER in the ever-evolving landscape of model-based information retrieval.

9 CONCLUSION AND FUTURE WORK
In this paper, we delve into the optimization objectives of generative retrieval and dense retrieval and identify a
limitation of generative retrieval in ranking tasks stemming from a lack of adequate ranking signals. Building
upon this observation, we present ROGER, a novel training strategy that integrates relevance feedback from dense
retrieval to enhance the training of a ranking-oriented generative retrieval model. Through extensive experiments
on three publicly available datasets, we demonstrate that ROGER effectively enhances the performance of various
generative retrieval models.

The results of our experiments provide empirical evidence of the effectiveness of ROGER in improving the
ranking capabilities of generative retrieval models. However, there remain opportunities for further exploration in
combining these two paradigms. In the future, we plan to investigate alternative approaches, such as reinforcement
learning and adversarial learning, to further enhance the integration of generative and dense retrieval. Moreover,
we are also interested in the use of large language models in information retrieval. These techniques hold the
potential to unlock additional performance gains and refine the synergy between generative and dense paradigms
in the context of document retrieval.
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