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Abstract

Retrieval-augmented Large Language Models
(RaLLMs) are reshaping knowledge acquisi-
tion, offering long-form, knowledge-grounded
answers through advanced reasoning and
generation capabilities. Despite the emer-
gence of impactful systems like WebGPT and
New Bing, the reliability of RaLLMs, espe-
cially in complex situations, is under scrutiny.
Our study tackles this concern by evaluating
RaLLMs’ question-answering performance us-
ing a novel benchmark focusing on Correctness
and Groundedness. Correctness measures the
logical soundness of the responses, and Ground-
edness checks for support by relevant refer-
ences. We introduce an automated model-based
evaluation pipeline for multi-hop question-
answering tasks, revealing RaLLMs’ prone-
ness to generating inaccuracies when dealing
with flawed or partial knowledge. To improve
accuracy, we introduce two reasoning strate-
gies, Self-Reflection’ and Self-Completion,’ en-
abling RaLLMs to identify and fill knowledge
gaps, significantly improving answer quality
without extensive model retraining.

1 Introduction

Over the last few decades, search engines have
played a pivotal role in how people find infor-
mation online (Croft et al., 2010), typically pro-
viding a ranked list of web pages in response to
queries. However, the advent of open-domain ques-
tion answering systems has shifted this paradigm
by enabling direct answer generation from web con-
tent. Initially, these systems relied on passage re-
trieval and machine reading comprehension(Chen
et al., 2017; Karpukhin et al., 2020) to identify
relevant passages and extract answers. This ap-
proach has evolved into retrieval-augmented gen-
eration (RAG) (Lewis et al., 2020; Izacard and
Grave, 2020), which utilizes language models to
synthesize answers from multiple passages. The
integration of RAG with large language models,

leading to the development of retrieval-augmented
large language models (RaLLMs) (Borgeaud et al.,
2022; Izacard et al., 2022; Thoppilan et al., 2022),
has significantly advanced the field. RaLLMs are
well-received in the community, leading to the de-
velopment of influential prototypes, such as We-
bGPT (Nakano et al., 2021) and New Bing. The
new systems have demonstrated remarkable poten-
tial in various cases, whose generated answers are
praised for two new characters. Firstly, people may
get long-form answers in contrast to the previous
short-form ones, where semantic-rich elaborations
are presented to facilitate people’s comprehension.
Secondly, the generated answer can be grounded on
the retrieved references, which makes the answer
traceable and variable. It is commonly believed
that the answers from RaLLMs are not only lin-
guistically plausible, but also generally credible.

In this work, we challenge this common belief
by arguing that RaLLMs’ answer quality is open
to debate, especially in complex scenarios such
as multi-hop question answering (MHQA) (Yang
et al., 2018; Welbl et al., 2018). We propose exam-
ining answer quality through two lenses: correct-
ness and groundedness. Correctness evaluates if a
question is accurately resolved with logical reason-
ing, while groundedness checks if the answers are
well-supported by appropriate references. Tradi-
tionally, evaluations for these perspectives heavily
rely on human labelers (Nakano et al., 2021; Qin
et al., 2023), which can be hard to scale up. To mit-
igate this problem, we propose a model-based ap-
proach for automatic evaluation. For correctness,
our approach assesses if the RaLLMs’ answers and
their reasoning processes align with the ground-
truth. Different from traditional methods which
only emphasize short answer matches. we suggest
a new benchmark that evaluates answers based on
key-facts, highlighting the crucial reasoning steps
essential for deriving an answer. For groundedness,
except for the citation completeness of all ground-



truth references, we further examine whether each
statement within RaLLMs’s generated answer can
be supported by its cited references.

Our research delves into the factors affecting
the performance of RaLLMs, revealing that answer
quality is influenced not just by the models’ inher-
ent capabilities and the way prompts are crafted,
but crucially by the condition of retrieved knowl-
edge. Particularly, there are two critical factors of
the answer quality regarding the retrieved knowl-
edge: knowledge recall and knowledge precision.
Knowledge recall assesses whether all necessary
information for a question has been retrieved, while
knowledge precision evaluates the relevance of the
retrieved information to the question. Our find-
ings indicate that enhancing knowledge comple-
tion (high recall) and relevance (high precision)
invariably improves answer quality. Conversely,
we observe that RaLLMs tend to **generate false
statements** when faced with incomplete (miss-
ing crucial information) or noisy (containing ir-
relevant information) knowledge. Although these
fabrications may appear plausible, they often rely
on non-existent facts or bear no relevance to cited
references Such a tendency can be regarded as a
form of hallucination by RaLLMs, which is a major
threat in actual usage.

Building on our empirical insights into the limi-
tations of RaLLMs, we focus on enhancing answer
generation to counter the propensity for fabricat-
ing false statements due to incomplete or irrele-
vant knowledge. We introduce a novel pipeline
that incorporates two reasoning strategies: self-
reflection and self-completion.Drawing inspira-
tion from reasoning-reflection models like Re-
Act (Yao et al., 2022), which promote internal vali-
dation of outputs through CoT-like reasoning (Wei
et al., 2022), our approach encourages RaLLMs to
internally evaluate the accuracy of their responses
(self-reflection) and actively seek out missing in-
formation by generating subsequent search queries
(self-completion). This pipeline, designed to be
simple and not reliant on adjusting the extensive
parameters of RaLLMs, significantly enhances an-
swer quality by reducing the likelihood of fabrica-
tions and increasing the relevance and complete-
ness of the information provided.

2 Related Work

In this section, we discuss the related works from
two aspects: retrieval augmented large language

models, and question answering.

Retrieval-augmented LLMs. RaLLMs have
emerged to address LLMs’ limitations in handling
complex questions due to their finite parameter
capacity (Li et al., 2024b; Liu et al., 2024). By
integrating external knowledge, RaLLMs aim to
overcome these limitations, with research spanning
architecture, training, and application. Key de-
velopments of architecture development include
the REALM framework for external knowledge re-
trieval (Guu et al., 2020), in-context retrieval meth-
ods (Ram et al., 2023; Qian et al., 2024), generic
retrieval-augmented pipeline (Jiang et al., 2023b)
and REPLUG for black-box models (Shi et al.,
2023). Training innovations feature memory aug-
mentation (Zhong et al., 2022; Zhou et al., 2024b),
contrastive learning (Izacard et al., 2022) and self-
retrieval methods (Rubin and Berant, 2023), with
models like WebGPT (Nakano et al., 2021) and We-
bCPM (Qin et al., 2023) demonstrating RaLLMs’
potential in web scenarios. Our study introduces a
benchmark focused on evaluating RaLLMs based
on answer quality, particularly looking at correct-
ness and groundedness, to promote automated eval-
uation methods that reduce the reliance on human
judgment.

Multi-hop Question Answering. MHQA repre-
sents a significant NLP challenge, requiring the syn-
thesis of multiple evidence pieces for accurate an-
swers. Initiatives like the HotpotQA dataset (Yang
et al., 2018) have spurred diverse approaches, in-
cluding graph-based models (Cao et al., 2019;
Dong et al., 2023; Jiang et al., 2023a; Qiao et al.,
2022) that construct knowledge graphs for evidence
linking and decomposition-based models (Talmor
and Berant, 2018; Press et al., 2022; Khattab et al.,
2022) that simplify questions into manageable
parts. Recent advancements leverage LLMs for
complex QA tasks, with strategies like REACT’s
thought-action-observation loop (Yao et al., 2022)
and introspective reasoning (Shinn et al., 2023;
Zhou et al., 2024c). There are also other studies pri-
marily focused on prompt compression (Jin et al.,
2024), hallucination detection (Su et al., 2024),
personalization (Zhou et al., 2024d), and trustwor-
thiness (Zhou et al., 2024a) in RaLLMs. Different
from previous studies, our work evaluates RaLLMs’
answer generation capabilities and proposes the
self-reflection and self-completion mechanisms to
improve response accuracy.



Were Scott Derrickson and Ed Wood of the same nationality?

[1] Scott Derrickson. 
Scott Derrickson is an 
American director, 
screenwriter and 
producer …

[2] Ed Wood. Edward 
Davis Wood Jr. was an 
American filmmaker, 
actor, writer, producer, 
and director …

[3] Tyler Bates. Tyler 
Bates is an American 
musician, music 
producer, and composer 
for films, television …

No, Scott Derrickson and Ed Wood were not of the same nationality. Ed Wood 
was an American filmmaker, actor, writer, producer, and director, born in 
Woodson, Arkansas in Pulaski County, Arkansas [2]. Scott Derrickson is an 
American director, screenwriter, and producer, born in Los Angeles, 
California [1].

- Scott Derrickson is an American. √
- Ed Wood is an American. √
- Scott Derrickson and Ed Wood are of the same nationality. ×
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Support or not?

Question

References

Model output

Golden answer

Yes

Key-facts

GPT4

Step reasoning

Key-facts extraction

Human 
filtering

LLMs

Step 1: Scott Derrickson 
is an American director, 
screenwriter and producer
Step 2: Similarly, Ed Wood 
is an American filmmaker, 
actor, writer, producer, 
and director.
Step 3: both Scott 
Derrickson and Ed Wood are 
American.
Step 4: They are of the 
same nationality.

Key-facts construction

Inference & Evaluation

Question ---> Golden answer
Intermediate steps

Figure 1: The task setup of our benchmark. Dashed lines depict the key-facts construction process of the benchmark,
while solid lines represent the model inference and evaluation process.

3 Benchmarking

The question answering task is defined as gen-
erating a long-form answer with citations for a
given question q and its associated reference list
C = {cq1, c

q
2, ...} from a corpus. We focus on

MHQA tasks due to their complexity, which effec-
tively tests LLMs’ answering capabilities. MHQA
requires integrating multiple knowledge sources
and performing multi-step reasoning, making it an
ideal benchmark for evaluating LLMs.

Dataset. HotpotQA (Yang et al., 2018) is cel-
ebrated as the benchmark dataset for evaluating
MHQA. Each dataset entry comprises a question,
10 Wikipedia-sourced references (with all golden
passages), and an answer. It requires analysis
and synthesis across several documents to derive
an answer, making it ideal for assessing LLMs’
knowledge-grounding ability.

However, HotpotQA dataset only offers short
answers, which we believe are inadequate for thor-
oughly evaluating LLMs’ reasoning capabilities, as
models might skip essential reasoning steps. , as
illustrated in Figure 1. This method allows for a
more comprehensive evaluation of LLM outputs by
focusing on their ability to support key-facts.

Key-facts Construction. We employ the most
advanced GPT-4 model to assist us in construct-
ing key-facts, which has proven to be an effective
method for data construction due to its robust judg-
ment capabilities (Li et al., 2024a). The key-facts
generated by LLMs are then verified by human
annotators. Due to the costs of API usage, we
randomly sample 500 questions from the dataset
for experiments. The construction of key-facts in-
volves three steps:

• Step Reasoning: Given a question, a set of refer-
ences, and the validated answer, we utilize GPT-4
to decipher the intermediate steps from the query
to the answer based on the supplied references.
Specifically, we provide demonstrations and em-
ploy the following prompt to generate reason-
ing steps: “[Question], [References], [Answer].
Please figure out the reasoning process towards
the answer step-by-step without other content.”

• Key-facts Extraction: A high-quality assembly
of key-facts should embody two core characteris-
tics: (1) Necessity, implying that each key fact is
a crucial intermediate step to answer the posed
question. (2) Independence, meaning that each
key fact should neither duplicate nor overlap re-
dundantly with others. To achieve this, we further
engage GPT-4 to extract several key-facts from
the reasoning steps with the prompt: “[Question],
[Reasoning steps], [Answer]. Please identify 2
to 4 non-redundant key-facts within the reason-
ing steps which are necessary to derive the final
answer.”

• Human Filtering: To ensure the accuracy and
relevance of the extracted key-facts, we introduce
a manual human filtering phase, where human
annotators evaluate and remove redundant or un-
reasonable key facts, thereby creating a reliable
base for evaluating LLMs’ performance.

In conclusion, our benchmark dataset is struc-
tured with four main components: question, ref-
erences, key-facts, and answer. In the subsequent
section, we detail how this benchmark can be uti-
lized to evaluate the outputs generated by LLMs.



Were Scott Derrickson and Ed 
Wood of the same nationality?

[1] Scott Derrickson. 
Scott Derrickson is an 
American director, 
screenwriter and 
producer …

[2] Tyler Bates. Tyler 
Bates is an American 
musician, music 
producer, and composer 
for films, television …

I’m sorry. I cannot answer 
the question based on the 
provided references

I need to know 
the nationality 
of Ed Wood

No, they are from 
different nationalities

False statement

[3] Ed Wood. Edward 
Davis Wood Jr. was an 
American filmmaker, 
actor, writer, producer, 
and director …

Were Scott Derrickson and Ed 
Wood of the same nationality?

[1] Scott Derrickson. 
Scott Derrickson is an 
American director, 
screenwriter and 
producer …

[2] Tyler Bates. Tyler 
Bates is an American 
musician, music 
producer, and composer 
for films, television …

Self-reflection

Self-completion

(a) Standard RaLLMs (b) Improved RaLLMs

References

References

Question Question

Knowledge is 
incomplete Direct answer

Self-reflection

Can answer

Cannot answer

Please answer the question based on the 
provided references. If you cannot answer, 
return "I'm sorry, I cannot answer the 
question based on the provided references".

Self-completion

Cannot 
answer

The provided references is not enough to 
answer the question. To answer the question, 
please return starts with "I further need to 
ask the search engine:"

Figure 2: The improvement of RaLLMs. The improved method unleashes LLMs’ capability on self-reflection and
self-completion, to examine the completeness of knowledge and missing knowledge in references respectively.

4 Automatic Evaluation

In the domain of MHQA tasks, our benchmark
evaluates model outputs based on: (1) Correctness,
assessing the model’s accuracy and logic in answer-
ing questions; and (2) Groundedness,examining
how answers are supported by pertinent and sub-
stantiated references. Below, we delve into the
specific evaluation metrics for each.

4.1 Correctness

Correctness in question answering hinges on accu-
rately resolving questions via multi-hop reasoning.
Traditional methods like exact match to ground
truth and human evaluations face challenges: exact
matches may not fully capture LLMs’ reasoning
depth, while human evaluations are impractical for
large-scale testing. Addressing these issues, we
introduce an automatic evaluation method specif-
ically designed for LLM outputs, leveraging two
metrics based on predefined key-facts.

• Key-facts Recall: This metric evaluates the de-
gree to which an LLM’s response encompasses
the necessary key-facts. Given a set of essential
key-facts, Kq = {kq1, k

q
2, · · · }, for a question q,

the model’s response is analyzed for coverage
of these key-facts. The emphasis is on identify-
ing whether the model’s response, Sq, entails all
elements of Kq. In this place, we introduce an
oracle function f(·) to determine the entailment
between the model’s output and each key-fact:

Rkey =
1

|Kq|
∑
i

f(Sq, kqi ),where kqi ∈ Kq,

where “f (premise, hypothesis)” returns 1 if the
premise entails the hypothesis, and 0 otherwise.

We employ TRUE (Honovich et al., 2022), a
widely-recognized NLI (natural language infer-
ence) method, as our oracle function. It is empir-
ically verified that this oracle function provides a
close alignment with human judgment.

• Key-facts Precision: Beyond assessing the re-
call of key-facts, it’s vital to measure the pre-
cision with which these key-facts are presented
in the response. This stems from the observa-
tion that certain models might generate extremely
long responses, leading to superficially high re-
call. However, such answers could be diluted
with unnecessary or irrelevant information. To
gauge the precision, each sentence sqi within the
model’s response is evaluated against the key-
facts to determine its relevance:

Pkey =
1

|Sq|
∑
i

f(sqi , any(kqi )).

By integrating recall and precision metrics for
key-facts, this benchmark effectively and compre-
hensively evaluates the accuracy of LLM outputs,
offering a more accurate assessment of its multi-
hop reasoning abilities in complex QA tasks.

4.2 Groundedness
In assessing Groundedness, we aim to verify
whether LLM-generated answers are supported by
references and the accuracy of those citations. For
MHQA tasks, responses often incorporate infor-
mation from various sources for a complete an-
swer. To investigate if the generated answers are
well-referenced, we evaluate the groundedness of
answers across the following dimensions.

• Citation Recall & Precision: This metric evalu-
ates the alignment between the model’s citations



and the required references for answering a ques-
tion, using the provided golden reference IDs for
precise assessment. Citation precision and recall
are calculated as follows:

Rcit = |Cm∩Cg|/|Cg|, Pcit = |Cm∩Cg|/|Cm|,

where Cm is the set of model’s references, Cg

the set of ground-truth references, ∩ denotes set
intersection, and | · | the set size.

• Self-Consistency: This aspect evaluates a
model’s self-consistency, which involves check-
ing the consistency between the model’s re-
sponses and its cited sources. It focuses on the
model’s capability to not only produce accurate
responses but also to accurately associate them
with the correct references. Specifically, we first
segment the model’s response S into individual
sentences and then evaluate the consistency be-
tween these sentences and the cited references.
For each sentence in the answer paired with
its associated citations, denoted as si, Ci, self-
consistency is determined by:

SC =
1

n

∑
i

f (Concat(Ci), si) ,

where f epresents the same NLI model as men-
tioned above, n signifies the total number of such
statements, and Concat(Ci) denotes the concate-
nation of all references within Ci.
In conclusion, the correctness and groundedness

metrics provide a comprehensive assessment of
large-scale model outputs, revealing their profi-
ciency in utilizing external knowledge. Our ex-
periments in Section 6.3 demonstrate that LLMs
are highly responsive to the quality of retrieved
knowledge. To enhance the capabilities of these
LLMs, we propose self-improvement strategies to
refine their answer generation process.

5 Model Improvement

Our empirical studies on a benchmark reveal that
RaLLMs tend to generate false statements when
reference knowledge is noisy or incomplete. To ad-
dress this issue, we introduce an enhanced answer
generation pipeline enriched by two advanced built-
in capabilities, self-reflection and self-completion
(see Figure 2). The self-reflection is employed to
assess the logical soundness and knowledge com-
pleteness. While the self-completion is to improve
the current answer by proactively querying for the
missing knowledge.

5.1 Self-reflection

Drawing from recent developments in reasoning-
reflection frameworks (Yao et al., 2022; Shinn et al.,
2023), it has been observed that LLMs possess
the ability for self-reflection, i.e. an introspective
assessment of the reliability of their own reasoning
processes. As we venture into the improvement of
RaLLMs, a fundamental question arises:
• Q1: Can the model ascertain whether the cur-

rent knowledge base adequately addresses the
questions in MHQA scenarios?
Compared to general LLMs, models endowed

with self-reflection capabilities are more able to
evaluate the completeness and relevance of the in-
formation contained within these references con-
cerning the posed question. Thus, we attempt to
leverage RaLLMs ability of self-reflection through
the following prompt:
• Prompt-reflection: [Question], [References].

Please write a high-quality answer ... If the ref-
erences are insufficient to answer the question,
respond with "I’m sorry, I cannot answer the
question based on the provided references".

This self-reflective step is crucial as it gauges the
model’s ability to identify gaps or insufficiencies in
knowledge, prompting abstention from answering
if uncertain. The subsequent section explores the
"self-completion reasoning mechanism" activated
upon identifying a knowledge gap.

5.2 Self-Completion

Even if the model is aware that the existing knowl-
edge is inadequate to answer a question, it doesn’t
necessarily indicate that it knows what knowledge
is missing. In this section, we aim to explore this
capability of the model with the following question:
• Q2: In MHQA scenarios, can the model discern

what knowledge is missing in references to accu-
rately answer a question?

Triggered by identifying knowledge inadequacies,
the self-completion mechanism aims to bridge such
gaps by generating additional search queries to
fetch the missing information. This advanced rea-
soning phase requires the model to be aware not
only of its limitations but also of the necessary
steps to fill these gaps to produce an answer.

When encountering inadequately supported
queries, the LLM is asked to generate additional
search queries, as illustrated below:
• Prompt-completion: [Question], [References].



Model
Correctness Groundedness

Prec. Rec. F1 SC. Prec. Rec.

Foundation LLMs

llama7B 6.12 22.96 9.54 36.42 1.94 3.0
llama13B 5.45 16.33 8.17 51.98 3.63 6.2
llama213B 5.70 10.12 7.60 62.74 6.17 7.6

Instruction-tuned LLMs

ChatGLM26B 66.85 48.06 55.45 48.99 3.36 2.4
Vicuna7B 47.04 45.96 46.48 61.45 11.99 11.4
Vicuna13B 53.00 48.69 50.78 68.66 21.77 25.7
llama2-c13B 57.13 47.97 52.23 62.61 19.79 15.3
ChatGPT 85.40 56.55 68.22 68.68 90.99 64.6

Table 1: Comparison of different LLMs on our bench-
mark. 5 passages (including all golden passages) are
provided for each question for fair comparison.

Given the insufficiency of the current references,
please start your query with "I further need to ask
the search engine:" to gather more information.

Once the model generates these supplementary
search queries, they are executed to fetch more
information from a search engine. The newly re-
trieved references are added into the previous refer-
ence list for LLMs to formulate a new response.
This iterative process continues until the LLM
believes that it possesses a comprehensive set of
knowledge to provide an answer to the question.

6 Experimental Analysis

In this section, we evaluate various LLMs’ multi-
hop reasoning abilities using our benchmark,
including foundation models like llama7B/13B
and llama213B (Touvron et al., 2023), along
with instruction-tuned variants such as Chat-
GPT, Vicuna7B/13B (Zheng et al., 2023), and
llama2-c13Bhat (llama2-c13B). We then analyze the
correlation between automatic evaluations and hu-
man judgments. Subsequently, we explore the per-
formance of LLMs with different retrieved knowl-
edge conditions. Finally, we discuss enhancements
to the question answering pipeline.

6.1 Comparisons among Different LLMs

Table 1 presents our benchmark results, adopting a
default of 5 references (including all golden refer-
ences) per question to accommodate input length
limits for all LLMs. The comparison reveals:

(1) Instruction-tuned LLMs vs. Foundation
LLMs. Instruction-tuned LLMs significantly out-
perform foundational models, which often rely on
simplistic strategies, such as copying sentences

Model
Correctness

Prec. Rec. EM Rec. HPrec. HRec.

ChatGLM26B 66.8 48.0 62.2 60.8 57.0
Vicuna7B 47.0 45.9 67.6 55.0 43.5
Vicuna13B 53.0 48.6 68.4 64.0 50.5
llama2-c13B 57.1 47.9 69.8 65.1 41.5
ChatGPT 85.4 56.5 79.4 78.4 70.0

Pearson 0.87 0.88 0.54 - -

Table 2: Human evaluation for correctness on precision
(HPrec.) and recall (HRec.). Pearson indicates the
correlation between automatic and human assessments.

from sources or avoiding source referencing. How-
ever, once instruction tuning is performed, we ob-
serve a marked improvement in the quality of an-
swers in terms of both correctness and grounded-
ness. This highlights the potency of instruction
tuning in logical reasoning capabilities of LLMs.

(2) Comparison of different model families. In
evaluating instruction-tuned models—ChatGLM,
Vicuna, and ChatGPT—we observe distinct behav-
iors. ChatGLM excels in correctness but some-
times falls short in groundedness compared to non-
instruction-tuned models. Vicuna presents a bal-
anced performance in both areas, while ChatGPT
stands out for its proficiency in correctness and
groundedness. These findings reveal that varying
pre-training and fine-tuning settings lead to dis-
parities in performance, particularly in terms of
correctness and groundedness.

(3) Correctness vs. Groundedness. The results
suggest a complex link between correctness and
groundedness. A high degree of groundedness typ-
ically suggests that the model excels at utilizing
correct knowledge, thereby potentially improving
the correctness of its responses. However, the Chat-
GLM2 model, despite generating correct responses,
it struggles to cite the references adequately as the
metrics of groundedness are very low. This high-
lights groundedness as a more demanding criterion
than correctness. ChatGPT excels in both correct-
ness and relevance, showcasing its superiority.

6.2 Comparisons between Model-based and
Human Evaluation

To assess the alignment between our automatic
evaluation and human judgment, we perform a hu-
man evaluation on 50 randomly chosen question,
with 10 experts rating answer correctness based on
precision and recall, their scores averaged. Preci-
sion and recall are evaluated with (1) the proportion
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Figure 3: The performance of different LLMs on cor-
rectness under different knowledge precision.

of sentences within the answer that are helpful in
answering the given question (0 not useful, 1 help-
ful), and (2) answer completeness ([0, 0.25, 0.5,
0.75, 1] from inadequate to fully adequate). For
comparison, we present the metric of "EM recall",
which assesses the correctness by determining the
presence of the correct short answer within them.

Table 2 shows that our NLI model-based au-
tomatic evaluation metrics for key-facts strongly
align with human judgments. While there’s only a
moderate correlation of 0.54 between human eval-
uations and the "EM recall" metric, our key-facts-
focused evaluation method shows a much more
consistent alignment with human feedback, with
coefficients exceeding 0.87 for precision and 0.88
for recall. This suggests that our method can accu-
rately measure the correctness of LLMs’ outputs.

6.3 Impact of Knowledge Conditions

To thoroughly examine how models utilize exter-
nal knowledge, we modify the retrieval conditions
across two aspects: noise and completeness. For
noise, we manually adjust the knowledge preci-
sion to investigate the impact of the signal-to-noise
ratio of references on LLM. For completeness, we
control the knowledge recall by providing no, par-
tial, and complete references respectively, and ob-
serve their influence on LLM outputs.

Knowledge Precision. Knowledge precision de-
scribes the accuracy and relevancy of information
retrieved from references for specific queries. It es-
sentially measures the signal-to-noise ratio within
the sourced references. To assess this, we varied
the number of references (including two golden
references) and evaluated how models performed
with differing levels of knowledge precision. The
performance trends of various models in terms of
recall (correctness) can be seen in Figure 3.

It’s clear that as noise levels in references in-
creased, all models showed a decrease in perfor-

Model
Closebook Partial Complete

Prec. Rec. Prec. Rec. Prec. Rec.

ChatGLM26B 17.59 13.72 39.98 25.87 66.85 48.06
Vicuna7B 12.20 15.51 31.57 34.95 47.04 45.96
Vicuna13B 19.48 21.58 51.96 44.80 53.00 48.69
llama2-c13B 18.23 26.83 44.39 34.37 57.13 47.97
ChatGPT 21.44 39.17 61.37 35.34 85.40 56.55

Table 3: The performance of different LLMs on correct-
ness under different knowledge recall.

mance, highlighting their sensitivity to knowledge
precision. This drop in accuracy becomes more ev-
ident when the amount of non-relevant references
increases, likely because the models struggle to fil-
ter out noise when approaching their input length
limit. Notably, ChatGPT and ChatGLM exhibited
resilience, with only a minor decrease in recall rates
(4.3% and 14.3% respectively) when references
doubled from 5 to 10. In contrast, models like
LLaMA and Vicuna saw a significant 30% plunge
in recall, underscoring the comparative robustness
of ChatGPT and ChatGLM against noise.

Knowledge Recall. We examined the impact
of knowledge completeness on the LLM outputs
in MHQA scenarios. For a query to be answered
correctly in such tasks, it’s essential to draw infor-
mation from at least two separate references. By
intentionally omitting parts of the necessary refer-
ences, we assessed how knowledge recall variabil-
ity affects LLM responses. We compared scenarios
ranging from no references (Closebook) to partial
and complete ground-truth references.

Our findings, as shown in Table 3 reveal that
knowledge completeness significantly influences
LLM performance, particularly highlighting the
importance of retrieval quality. Notably, ChatGPT
exhibits higher adaptability to variations in knowl-
edge recall, leveraging its built-in knowledge to
fill reference gaps. Conversely, less robust models
require comprehensive external references, under-
scoring their reliance on extensive knowledge recall
to compensate for their intrinsic shortcomings.

Summary. Our experiments reveal notable fluc-
tuations in RaLLMs’ performance as knowledge
conditions vary, with key observations including:

• RaLLMs are highly sensitive to the signal-to-
noise ratio in retrieved knowledge; a lower ratio
leads to decreased accuracy.

• The completeness of knowledge significantly im-
pacts RaLLMs’ efficacy on complex QA tasks.



Model
No Improvement Self-improvement Self-Reflection Model Capability

Prec. Rec. F1 Prec. Rec. F1 Acc. F1 Reasoning Reflection Completion

Foundation LLMs

llama7B 3.81 10.83 5.85 3.51 10.53 5.36 51.2 11.3 − − −
llama13B 4.63 15.00 7.11 4.42 15.73 6.81 51.8 20.7 − − −
llama213B 7.17 13.83 9.53 5.54 12.17 7.68 50.0 8.9 − − −

Instruction-tuned LLMs

ChatGLM26B 29.33 22.93 25.84 34.47 27.07 30.41 57.6 61.2 ✓ ✓ ✓
Vicuna7B 10.73 13.33 11.92 13.66 13.37 13.51 51.4 44.5 ✓ − −
Vicuna13B 27.89 19.33 23.08 22.52 20.03 21.19 55.2 61.0 ✓ ✓ −
llama2-c13B 33.86 24.33 28.45 32.67 21.21 25.76 60.2 67.1 ✓ ✓ −
ChatGPT 50.9 36.65 42.66 57.65 41.27 48.18 70.2 77.2 ✓ ✓ ✓

Table 4: The results of improved RaLLMs with BM25 retriever. Reasoning, Reflection, and Completion correspond
to three model capabilities in solving MHQA tasks. ✓ signifies that the model possesses this capability.

6.4 Impact of Model Improvements

As illustrated above, RaLLMs tend to make mis-
takes when the retrieved knowledge is incomplete
and noisy. These findings motivate the improve-
ment of the answer generation from two aspects:
self-reflection and self-completion.

Self-reflection. The goal of self-reflection is to
evaluate knowledge completeness before respond-
ing. This process, viewed as binary classification,
depends on the model’s ability to judge informa-
tion quality. We categorize questions into groups
with either complete or partial knowledge, main-
taining equal numbers in both. Model performance
is assessed by accuracy and F1 score metrics.

As shown in Table 4, llama-based models strug-
gle in self-reflection, often answering without fully
evaluating knowledge completeness. Vicuna7B ex-
hibits some potential in identifying knowledge
gaps, though its accuracy still remains low. As the
models become more powerful, their self-reflection
capability seems to improve. ChatGPT stands as
the most advanced LLM in these models, under-
scoring the advantages of utilizing more substantial
models to enhance their self-reflection capability
during multi-hop question answering.

Self-completion. Self-completion evaluates the
model’s enhanced cognitive abilities, which include
not only the recognition of problems but also the ca-
pacity to pinpoint possible solutions. In our study,
Wikipedia serves as our primary corpus, and we
utilize BM25 (Robertson and Zaragoza, 2009) as
the retriever to source relevant references. To dis-
tinguish between basic and advanced reasoning tac-
tics, we categorize them as single-hop (standard)
and multi-hop (improved) self-completed retrievals.
To ensure a balanced comparison, irrespective of

the number of retrievals, we maintain a consistent
number of references retrieved, always capped at
10. If the self-completion strategy can notably in-
crease the quality of answers, it indicates that the
model possesses the capability of self-completion.

The self-improvement results in Table 4 re-
veal that for models like ChatGPT and ChatGLM,
the improved question-answering pipeline substan-
tially improves the accuracy of the responses. How-
ever, this trend is not consistently observed across
all models. While Vicuna13B and llama2-c13B are
equipped with self-reflection features, they may
encounter difficulties in autonomously generating
subsequent queries. Low-quality queries might in-
troduce more noise, making them less effective
than utilizing the original queries directly. In sum-
mary, our exploration delved into three tiers of
model capabilities. Foundation LLMs, like the
llama series, exhibit general reasoning prowess suit-
able for straightforward tasks. Instruction-tuned
LLMs display advanced self-reflection, enabling
them to identify their own limitations. Meanwhile,
models such as ChatGPT and ChatGLM demon-
strate a higher capability of self-completion, driv-
ing themselves toward continuous improvement.

Summary. TThe experiments demonstrate that
RaLLMs’ performance varies with the enhanced
reasoning strategy. Key observations include:

• Instruction-tuned models exhibit multi-hop rea-
soning and self-reflection abilities.

• Models enhanced with techniques like RLHF
show self-completion capabilities, allowing them
to benefit from the improved pipeline.



7 Conclusion

In conclusion, this paper delves into the evaluation
of answer quality in RaLLMs within multi-hop
question answering tasks. We propose a frame-
work to automatically assess two critical factors:
correctness and groundedness. Our empirical inves-
tigation uncovers the propensity of RaLLMs to gen-
erate false statements in the presence of incomplete
or noisy retrieved knowledge. To counter this, we
propose an answer generation pipeline that incorpo-
rates self-reflection and self-completion strategies,
significantly enhancing answer reliability. This
groundwork paves the way for a deeper insight into
the strengths and weaknesses of RaLLMs.

Limitations

Despite the advancements presented in our study
with RaLLMs, there are inherent limitations to con-
sider. First, the model-based approach for auto-
matic evaluation of answer quality, while scalable,
might not fully capture the nuanced judgment a hu-
man evaluator could provide. This could potentially
overlook subtle errors or inaccuracies that human
assessment would catch. Additionally, our method-
ology assumes the availability of accurate and com-
prehensive information within the retrieved knowl-
edge, which might not always be the case, partic-
ularly in rapidly evolving knowledge domains or
niche topics. Moreover, our proposed reasoning
strategies, self-reflection, and self-completion, al-
though effective in theory, depend heavily on the
models’ capacity to critically evaluate their out-
puts and identify information gaps. Lastly, our
approach, designed to mitigate the fabrication of
false statements, cannot guarantee the elimination
of all incorrect information generation, highlight-
ing a persistent challenge in ensuring the reliability
of LLM-generated content in practical applications.
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