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ABSTRACT

Learning from preference feedback is a common practice for aligning large lan-
guage models (LLMs) with human value. Conventionally, preference data is
learned and encoded into a scalar reward model that connects a value head with an
LLM to produce a scalar score as preference or reward. However, scalar models
lack interpretability and are known to be susceptible to biases in datasets. This
paper investigates leveraging the generation capability of LLMs to address both
limitations in one shot. Specifically, we prompt the pre-trained LLM to generate
positive and negative judgments, both supported with rationales in natural lan-
guage form. The self-generated contrastive judgment pairs are used to train the
generative judge with Direct Preference Optimization (DPO). This proposal of
training the generative Judge using self-generated Contrastive judgments (Con-J)
ensures natural interpretability due to the generated rationales together with the
judgments, as well as high robustness against bias without the need for an addi-
tional reward head. Experimental results show that the performance of Con-J is
comparable to the scalar reward model trained on the same collection of prefer-
ence data, and demonstrate its superior interpretability and robustness in encoding
human preferences.

1 INTRODUCTION

As Artificial Intelligence (AI) systems advance with the emergence of Large Language Mod-
els (LLMs), it is crucial to ensure they align with human instructions, values, and ethics. LLMs
alignment is generally achieved by learning from preference data that compares pairs of responses
to a question (Rafailov et al., 2024; Christiano et al., 2017; Liu et al., 2020). However, collecting
high-quality human preference data is both time-consuming and costly. In practice, the construction
of preference datasets often involves scaling with a combination of human and AI-generated feed-
back Lee et al. (2023); Hou et al. (2024). An additional advantage of AI feedback is its ability to
be incorporated in real-time, which facilitates online algorithms such as iterative-DPO Xiong et al.
(2024); Xu et al. (2023) and online-DPO Guo et al. (2024). Therefore, it is crucial to develop an
efficient and accurate AI-based preference model that aligns with human values.

To obtain such preferences, industrial practices have used scalar models Hou et al. (2024) that con-
catenate the pre-trained LLM with a value head to generate scalar scores for the responses. How-
ever, the scalar model suffers from limitations, particularly in the following aspects: (i) Lack of
interpretability: Beyond scalar scores, additional rationales are crucial to enhance the reliability of
judgments and facilitate human involvement in the evaluation loop. (ii) Susceptibility to bias: It is
prone to capturing the biases present in the preference dataset rather than human values. For exam-
ple, when the majority of positive answers in preference datasets are longer sentences, the learned
LLM will likely favor more verbose answers (Huang et al., 2024).

To address the above limitations, we propose Con-J, which trains a generative Judge using its
self-generated Contrastive judgments (see Figure 1). Con-J leverages the LLM’s pre-existing judg-
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The volume of a rectangular prism is 96 cubic decimeters, and the base area is 16 square decimeters. 
What is its height in decimeters?

We can use the following formula to calculate 
the height: V = S \times h. Substitute the known 
values into the formula: 96 = 16 \times h; h = 6. 

Height = Volume / Base Area = 96 / 16 = 
5 decimeters. Therefore, the height of 
the rectangular prism is 5 decimeters.

As an evaluation expert, given a question and its two possible answers, please choose which answer best 
aligns with coherence, accuracy, coverage, and overall quality. Output your judgment in JSON format, 
where "rationale" is your explanation, and "better_answer" is an integer type of 1 or 2, for example, 
{"rationale": "your explanation", "better_answer": 1}. Below are the question and its candidate answers:

Preamble

Question

Answer 1 Answer 2

Verbal Judgment

{“rationale”: “Answer 1 provides a complete solution that 
involves basic method and logical reasoning. Answer 2 
contains a calculation error.", "better_answer": 1}

Scalar reward model
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Scalar score
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The volume of a rectangular prism is 96 cubic decimeters, and the base area is 16 square decimeters. 
What is its height in decimeters?

We can use the following formula to calculate 
the height: V = S \times h. Substitute the known 
values into the formula: 96 = 16 \times h; h = 6. 

Height = Volume / Base Area = 96 / 16 = 
5 decimeters. Therefore, the height of 
the rectangular prism is 5 decimeters.

As an evaluation expert, given a question and its two possible answers, please choose which answer best 
aligns with coherence, accuracy, coverage, and overall quality. Output your judgment in JSON format, 
where "rationale" is your explanation, and "better_answer" is an integer type of 1 or 2, for example, 
{"rationale": "your explanation", "better_answer": 1}. Below are the question and its candidate answers:

Preamble

Question

Answer 1 Answer 2

{“rationale”: “Answer 1 provides a complete solution 
that involves basic method and logical reasoning. Answer
2 contains a calculation error.”, “better_answer": 1}

Scalar reward model

Instruction

Generative judge: Con-J

Scalar score

Answer 1 >  Answer 2 

LLM

+
Value head

LLM
5                     1

Rationale Preference prediction

Figure 1: Top: Examples of a preamble, a question, a pair of answers, and the corresponding judg-
ment (see the detailed version in Table 5). Bottom: Illustrations of a scalar reward model and the
proposed Con-J for preference judgment.

ment abilities Zelikman et al. (2022) and bootstraps its capacity to generate more accurate judg-
ments. As shown in Figure 2, Con-J consists of three steps: (Judgment Sampling) Sample several
judgments from a pre-trained LLM by prompting it with a query and a pair of candidate answers.
(Judgment Filtering) Leverage the true preference annotations to construct contrastive judgment
pairs, i.e., judgments with correct or incorrect preference. (Training) Train Con-J from the pre-
trained LLM based on these contrastive judgments using Direct Preference Optimization (DPO).

The design of Con-J differs from existing methods for enhancing the capabilities of generative
judges (or LLM-as-a-judge) (Li et al., 2023; Kim et al., 2024; Park et al., 2024). These methods
typically depend on external models (particularly GPT-4) or algorithmic schemes to produce high-
quality instruction-tuning datasets. In contrast, Con-J directly learns from preference data using a
self-bootstrapping approach similar to that of scalar reward models. As LLMs become more power-
ful, aligning them with high-quality judgments becomes more difficult since humans may not always
be able to write superior judgments. Instead, Con-J offers a new way by eliciting what the LLM al-
ready knows, supervised by human preferences, which are much easier to obtain than high-quality
judgments.

We train and evaluate Con-J on self-built commercial datasets across three domains: Text Creation,
Math, and Code and a series of publicly available datasets and benchmarks. Our findings indi-
cate that Con-J not only significantly outperforms the scalar model in the Text Creation task and
achieves comparable performance in Math and Code but also that its performance, when trained
on domain-specific data, will significantly surpass that of GPT-4o. Additionally, Con-J trained on
publicly available datasets achieves comparable performance with GPT-4o and surpasses a series
of existing open-source models. As a generative judge, Con-J can generate rationales to support its
preference prediction. We evaluate the correctness of these rationales and find that as the accuracy of
preference predictions improves, the correctness of the rationales also increases. Additionally, in a
synthetic experiment, we found that Con-J is less susceptible to dataset biases, which we attribute to
its generative training target and its feature to generate rationales simultaneously. To facilitate further
research and development within the community, We release the training process and model weights
of Con-J trained on publicly available datasets at https://huggingface.co/ZiyiYe/Con-J-Qwen2-7B.

To summarize, our contributions are:

1. We propose Con-J, an approach that trains a generative judge using a self-bootstrapped
technology to learn from preference data.

https://huggingface.co/ZiyiYe/Con-J-Qwen2-7B


2. We show that Con-J can offer more accurate rationales during preference learning. We also
provide theoretical motivation and empirical evidence showing that Con-J can be more
robust to dataset biases by training with rationales.

3. We test the performance of Con-J in commercial datasets and publicly available bench-
marks. Con-J outperforms the scalar models and a series of existing generative judges.

2 PRELIMINARY

2.1 TASK DEFINITION

Given a question or prompt q and a pair of assistant responses a1 and a2, the task is to judge the
preference between a1 and a2. To accomplish this, we train the model using an existing preference
dataset D = {(q, a−, a+)i}Ni=1, where a+ is a preferred answer compared to a−. The model’s per-
formance is subsequently evaluated on a separate, non-overlapping preference dataset by measuring
the accuracy of its preference judgments.

2.2 SCALAR MODEL

The most common practice for getting the preference judgment is to use a scalar model (SM) similar
to the reward model in the RLHF stage (Hou et al. (2024)). The SM predicts numerical scores r(q, a)
for a ∈ {a1, a2} and judges the preference by comparing r(q, a1) and r(q, a2). It is typically
initialized by concatenating a pre-trained LLM with a randomly initialized shallow MLP head. The
most widely used training objective for the SM follows the Bradley-Terry model, which maximizes
the probability of a+ being preferred:

P (a+ ≻ a−|q) = exp(r(q, a+))

exp(r(q, a+)) + exp(r(q, a−))
= σ

(
r(q, a+)− r(q, a−)

)
(1)

where σ is the sigmoid function.

The above-mentioned SM utilizes the prompt q and a single answer a as input, which we denote as
a pointwise SM. In addition, existing research has investigated a pairwise variant that uses a pair of
candidates as input, i.e., r(q, a1, a2) (Jiang et al., 2023). The pairwise vanilla reward formalizes the
preference probability of a+ as:

P (a+ ≻ a−|q) = σ(r(q, a+, a−)). (2)

To train the above-mentioned pointwise and pairwise SM r, we maximize the log-likelihood of the
preferences by minimizing the following loss function:

ℓR(r) = −
∑

(x,a+,a−)

log pr(a
+ ≻ a− | x) =

{
−
∑

(x,a+,a−) log σ(r(x, a
+)− r(x, a−)) (pointwise)

−
∑

(x,a+,a−) log σ(r(x, a
+, a−)) (pairwise)

(3)

3 IMPROVING GENERATIVE JUDGE BY TRAINING ON CONTRASTIVE
JUDGMENTS

Instead of using a scalar model for preference judgment, we propose to leverage the LLM itself
to make preference judgments (Guo et al. (2024); Lee et al. (2023)). Given the question q and
a pair of answers a1 and a2, we construct a prompt p by concatenating a preamble with q, a1,
and a2. The preamble is an instruction that describes the task and asks an LLM π to act as a
judge (see examples in Fig. 2 and Appendix 5). Then the LLM generates natural language judgments
j = π(p), which contains the judgment as well as the rationale in a JSON style: a key named
"rationale" includes a step-by-step explanation and verification of the answers, and another
key named "better answer" indicates the LLM’s binary judgment.

As shown in Figure 2, the construction of Con-J consists of three steps: judgment sampling, judg-
ment filtering, and Con-J training.
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Figure 2: The steps for constructing Con-J with a preference dataset that includes preference anno-
tations for a pair of answers to a question. S1: Prompt Con-J to generate multiple judgments for a
pair of answers by repeated sampling and hint-driven sampling. S2: Bootstrap contrastive judgment
pairs by filtering with true preference labels. A contrastive judgment pair consists of one judgment
with the correct preference and the other either with an incorrect preference or does not explicitly
indicate a preference. S3: Train Con-J using the DPO loss on contrastive judgments and the SFT
loss on positive judgments.

Judgment sampling: We construct contrastive judgment pairs by prompting the LLM to generate
multiple judgments. As shown in Figure 2, this is achieved by (1) repeated sampling and (2) hint-
driven sampling.

Repeated sampling prompts the LLM to generate multiple outputs from the same prompt, each uti-
lizing a different random seed during the generation process. However, the LLM may produce only
one-sided judgments (i.e., all judgments preferred a1 or a2) across all repeated samples. In such
cases, we cannot construct contrastive judgment pairs with repeated sampling. Therefore, we pro-
pose hint-driven sampling to compel the LLM to generate judgments that favor specific answers.
Essentially, the LLM is provided with an explicit indication of which answer is better, and is in-
structed to generate the judgment accordingly in the same JSON format as above. The prompt
template for hint-driven sampling is provided in Table 6. By manipulating the hint, we can get a
contrastive judgment pair for any prompt input.

Judgment filtering: We denote the outputs from repeating sampling as M(p). M(p) can potentially
include both “positive” and “negative” judgments. A positive judgment indicates the judgment
corresponding to the keyword "better answer" is correct (j+), while a negative judgment (j−)
indicates the judgment is incorrect (ji) or the model doesn’t explicitly indicate its preference (jn).
Contrastive judgment pairs {(j+, j−)} are hence constructed as the direct product of the positive
judgment set M(p)+ and negative judgment set M(p)−. We set the number of repeated samplings
to 8, allowing for the construction of up to 4 pairs (in the optimal case, there exist 4 positive and 4
negative judgments among the 8). For hint-driven sampling, we prompt the LLM with one correct
and one incorrect hint and construct one pair from them. The detailed sampling and filtering process
is outlined in Algorithm 1.

Con-J training: Based on the constructed judgment pairs DJ = {(q, a+, a−, j+, j−)i}Ki=1, we train
the LLM π with a direct preference optimization (DPO) loss function:

ℓDPO = −
∑

(p,j+,j−)

log σ

[
η log

π(j+|p)
π0(j+|p)

− η log
π(j−|p)
π0(j−|p)

]
(4)

where π0 is the reference model initialized as the base LLM and remains untrained. Following
existing practice Liu et al. (2024); Hong et al. (2024); Pal et al. (2024), the DPO also fuses a small
weight of supervised fine-tuning (SFT) loss to help mitigate the overoptimization issue, which can
be formulated as:

ℓSFT = −
∑

(p,j+)

log π(j+|p) (5)

Then we linearly combine the DPO loss and the SFT loss with a small weight α:

ℓfinal = ℓDPO + α ∗ ℓSFT (6)

DPO training promotes distinguishing between answers. Existing open-source generative
judges are generally trained using supervised fine-tuning (SFT) (Kim et al., 2024; Zhang et al.,



2024; Li et al., 2023) to imitate correct judgments. However, we empirically find that only SFT is
insufficient (see Setion 4). The intuition is that LLMs should identify the more important aspects of
a judgment, rather than patterns that may appear in both positive and negative judgments (Park et al.,
2024). For example, both “answer 1 has logical errors, so the better answer is 2” and “answer 2 has
logical errors, so the better answer is 1” could be positive judgments for different prompt inputs,
even though they are opposite in meanings. When LLM is trained with SFT loss, it may primarily
imitate the common pattern that appears in both answers rather than developing the ability to make
judgments based on the prompt. Similar studies 1 indicate that the likelihood of generating negative
output might even surpass that of positive output during SFT training.

Rationales bring robustness against bias. The proposed Con-J can generate rationales in addition
to the binary preference prediction. We suggest that training the model to generate rationales can
impart a regularization effect and help avoid potential biases in the datasets. Here we provide a
theoretical motivation for this effect. We decompose a judgment j into jr and jy , representing the
rationale and the binary preference prediction, respectively. Adding the rationales as training targets
can be formalized by introducing an intermediate variable jr influencing the conditional probability
Pθ(jy | p):

Pθ(jy | p) =
∑
j

Pθ(y | jr, p)Pθ(jr | p) (7)

By including rationales, the bias in preference data is distributed between jy and jr, reducing its
direct impact on jy . We can formalize the loss function as:

ℓ(θ) = −
∑

(p,j)∈D

logPθ(jy | p)−
∑

(p,j)∈D

logPθ(jr | p) (8)

The loss Pθ(jr | p) encourages the model to find representations that are also effective for predicting
jr, as it is less influenced by the bias compared Pθ(jy | p), which solely depends on the dataset’s
preference annotation.

Generative judge resists bias with a better prior. SM modifies the LLM’s architecture with a
classification head and uses a discriminative training target. On the contrary, Con-J uses an architec-
ture consistent with the pertaining process and generative training objectives (Zhang et al. (2024)).
We refer to Erhan et al. (2009) and assume the parameter inherited from the pre-trained LLM as
adding an infinite penalty:

ℓ(θ) = ℓdata(θ) +
λ

2
||θ − θ0||2 (9)

where λ is the regularization strength. We make an ideal hypothesis that there exists an optimal
θ∗ which fully encodes human values and consistently makes true judgments. Such an θ∗ must
have sufficient world knowledge beyond what preference datasets can provide during LLM post-
training. Hence we assume that the parameters obtained during the pre-training phase are closer
to θ∗ than a random distribution. This analysis suggests Con-J gets a smaller penalty term for
optimization towards θ∗. In contrast, SM adopts a different training objective and introduces a
randomly initialized head, making the regularization effect less significant. Hence, SM can be good
at encoding the knowledge reflected in the preference dataset but is also more sensitive to its bias
than Con-J.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. We train scalar models and Con-J on three datasets within different vertical domains:
Creation, and Math, then evaluate their performance in terms of the accuracy of preference predic-
tions. The datasets are self-built commercial datasets consisting of approximately 120,000, 50,000,
and 50,000 preference samples for Creation, Math, and Code, respectively. The Creative dataset
involves tasks on text creation such as writing poetry or crafting headlines, whereas Math and Code
datasets concentrate on math problem-solving and code writing, respectively. The datasets cover

1https://github.com/LLaMafia/SFT function learning



diverse sources, ranging from data generated by a commercial ChatBot, data generated by Chat-
GPT, and data from open-source datasets like HH-rlhf Bai et al. (2022) and Infinity-Instruct2. The
preference annotation for these datasets is gathered from human annotators, with each annotation
being performed by one annotator and subsequently verified by another. In addition to the self-built
datasets, we train Con-J on a publicly available dataset Skywork-Reward-Preference-80K-v0.13 and
test its performance on public benchmarks including Infinity-Preference4, UltraFeedback Cui et al.
(2023), PKU-SafeRLHF Ji et al. (2024), and Reward-Bench Lambert et al. (2024). We ensure that
no identical prompts appear in both the training and test sets by filtering them out of the training set.
This version of Con-J is publicly released in anonymized link.

Model. We select Qwen2-7B-Instruct Yang et al. (2024) as the base model to train both the scalar
model (named SM) and the proposed generative judge (named Con-J). SM includes both pairwise
and pointwise variants. Additionally, we included the original pre-trained Qwen2-7B-Instruct as
an untrained variant of Con-J. In addition, we compare Con-J with a range of generative judges,
including GPT-4o5 and two generative models (Auto-J Li et al. (2023) and Prometheus 2 Kim et al.
(2024)) trained by SFT, Llama series (Llama3.1-8B, and Llama3.1-70B), and Qwen series (Qwen2-
7B, Qwen2.5-72B).

Hyper parameters. We train SM and Con-J from with the DeepSpeed library Rasley et al. (2020),
Zero Redundancy Optimizer (ZeRO) Stage 3 Rajbhandari et al. (2020), gradient-checkpointing Chen
et al. (2016) and FlashAttention Dao et al. (2022). We use bfloat16 (BF16) and tfloat32 (TF32) mix
computation precision. We set a peak learning rate of 9e − 6 with 3% warmup steps and cosine
scheduler, and a maximum sequence length of 4,096. The batch sizes of SM and Con-J are set
to 128 and 24, respectively. For Con-J, we linearly combine the SFT loss and the DPO loss with
α = 1e−6.

Sampling and inference strategy for Con-J. We use VLLM Kwon et al. (2023) for the inference
for Con-J. During repeated sampling and hint-driven sampling, we employ greedy sampling with
top-p set at 0.9 and top-k at 20, with a maximum output length set as 512, a temperature of 1.0, and
a repetition penalty of 1.2. During the evaluation, we set top-p at 1.0 and a temperature of 0.0.

4.2 MAIN RESULTS

Table 1: Judgment accuracy of GPT-4o, SM,
and Con-J. ∗ indicates the performance dif-
ference between Con-J is significant at p <
0.05 using a pair-wise t-test.

Model Creation Math Code

GPT-4o 55.6∗ 74.8∗ 68.1∗

SM (point-wise) 69.4∗ 84.8 69.4
SM (pair-wise) 69.2∗ 84.6 69.6
Con-J 72.4 85.0 70.1

Table 1 presents the results of SM and Con-J on
the self-built commercial datasets across three ver-
tical domains. It can be observed that (i) there
is no significant difference between the pointwise
and pairwise variants of SM. Although existing re-
search suggests that concatenating the list of re-
sponses improves performance for scoring the re-
sponses Jiang et al. (2023), we do not observe this
effect on our datasets. (ii) Both Con-J and SM out-
perform off-the-shelf GPT-4o, indicating that small
models trained on domain-specific data can effec-
tively reflect domain-related preferences. (iii) On the
same preference datasets, Con-J consistently outper-
forms SM across all tasks with a significant gap on
the Text Creation task. This indicates that Con-J is more effective at acquiring accurate judgment
abilities than SM.

We carry out an ablation study to investigate the variants of Con-J. Given that current methodologies
often employ Supervised Fine-Tuning (SFT) to train generative judges Li et al. (2023); Kim et al.
(2024), we developed an SFT variant of Con-J, trained exclusively on positive judgments using SFT
loss. As illustrated in Table 3, Con-J trained with our proposed framework outperforms its variant
without DPO loss across all datasets. This observation demonstrates the effectiveness of training
from contrastive judgments. In addition, Con-J outperforms its variant without hint-driven sampling,

2https://huggingface.co/datasets/BAAI/Infinity-Instruct
3https://huggingface.co/datasets/Skywork/Skywork-Reward-Preference-80K-v0.1
4https://huggingface.co/datasets/BAAI/Infinity-Preference
5https://openai.com/index/hello-gpt-4o/



Table 2: Accuracy of generative judges on the test sets of four benchmarks: Infinity-Preference,
UltraFeedback, PKU-SafeRLHF, and Reward-Bench. Results in bold are the best among all models
and results with underline are the second-best.

Infinity-
Preference

Ultra-
Feedback

PKU-
SafeRLHF

Reward-Bench
Chat Chat-H Safety Reasoning

Llama3.1-8B 59.0 62.9 66.4 80.7 49.8 64.0 68.1
Llama3.1-70B 64.0 71.4 67.6 97.2 70.2 82.8 86.0
Qwen2-7B 59.0 64.5 67.2 91.3 44.8 73.6 69.0
Qwen2.5-72B 70.0 66.0 58.7 86.6 61.4 74.5 90.7
Auto-J 69.0 63.9 66.9 93.0 40.0 65.5 50.5
Prometheus 2 68.0 63.3 63.0 85.5 49.1 77.1 76.5
GPT-4o 75.0 72.2 69.6 95.3 74.3 87.6 86.9
Con-J (ours) 81.0 73.0 68.4 91.3 79.6 88.0 87.1

which relies solely on repeated sampling and may be infeasible to construct contrastive judgment
pairs for some prompts. Similar findings have been observed when using self-taught techniques to
improve LLMs Zelikman et al. (2022). Additional variants of Con-J were also tested, which are
detailed in the Appendix.

Table 3: Judgment accuracy of Con-J and its
variants. ∗ indicates the performance differ-
ence between Con-J is significant at p < 0.05
using a pair-wise t-test.

Model Creation Math Code

Con-J untrained 53.6∗ 63.4∗ 61.7∗

Con-J w/o Hint 61.3∗ 77.4∗ 68.2
Con-J w/o DPO 54.6∗ 64.2∗ 63.5∗

Con-J 72.4 85.0 70.1

For a fair comparison with other generative judge
models, we trained an open-source version of Con-
J using the publicly available dataset Skywork-
Reward-Preference-80K-v0.1, and evaluated its per-
formance on public benchmarks, as shown in Ta-
ble 2. Con-J outperforms existing publicly available
large language models (LLMs) in the vast majority
of benchmarks, including commercial instruction-
tuned models such as Llama series, Qwen series,
and a series of LLMs trained specially for preference
judgments such as Auto-J and Prometheus 2, ex-
cept in the Chat and Reasoning sub-task of Reward-
Bench. Additionally, Con-J achieves comparable
performance with the closed-source model GPT-4o
in all benchmarks. As of September 18, 2024, Con-J ranks first on the reward-bench leaderboard
among all models within 7B parameters, as well as second among open-source generative models.

4.3 PREFERENCE LEARNING YIELDS MEANINGFUL AND USEFUL RATIONALES.

We select 5 checkpoints trained on different numbers of contrastive judgment pairs, i.e., 2k, 4k, 8k,
16k, and 50k. Then we prompt GPT-4o with the question, corresponding pair of answers, and the
judgment generated by Con-J (see the prompt in Table 9). GPT-4o is instructed to score the judgment
ranging from 1 to 5 for the rationale’s correctness and from 1 to 3 for the rationale’s consistency with
its predicted preference. Additionally, GPT-4o is tasked as a meta-judge to evaluate whether Con-
J makes correct preference predictions. In this process, if the judgments of GPT-4o conflict with
the dataset’s true preference annotations, we exclude these questions for further analysis, as these
questions may exceed GPT-4o’s capabilities.

Experimental results are presented in Figure 3. From Figure 3(a), we observe that the correctness of
the rationales improves when Con-J is trained with more data and achieves increased judgment accu-
racy. However, we find that the consistency between Con-J’s preference prediction and its rationales
decreases with the increase in judgment accuracy, as shown in Figure 3(b). These observations indi-
cate that Con-J’s abilities to make binary preference predictions and generate correct rationales both
improve with training. However, the increase in inconsistency indicates that these improvements
may not be balanced. We suspect that because the supervision from preference datasets focuses
solely on predicted binary preferences, the enhancement in Con-J’s binary prediction ability is more
pronounced, leading to inconsistency.



(a) (b) (c)

Figure 3: We investigated 5 checkpoints (●,⃝, ■, □ , ◆, ▲, ▼) trained with different number of
contrastive judgment pairs (2k,4k,8k,16k,50k). (a-b) We prompt GPT-4o to evaluate the correctness
of the rationales and their consistency with the predicted preferences. (c) We tested the use of a
strong model’s rationale as input provided to a weak model, which can enhance the accuracy of its
preference prediction.

(a) Format (Adversarial) (b) Format (General) (c) Verbosity (Adversarial) (d) Verbosity (General)

Figure 4: The performance comparison of Con-J, Scalar model, and Con-J (without rationale),
trained with varying degrees of dataset bias (γ) in format and verbosity, and evaluated on Adversar-
ial and General test sets.

We further test whether the improved rationales can be used to help a weak judge make better judg-
ments. We use the untrained Con-J as the weak judge and prompt it with the rationales generated
by the stronger model. As shown in Figure 3(c), the weak judge yields more accurate preference
prediction with the rationales provided by a stronger model. Additionally, we find that rationales
generated by GPT-4o can also improve the weak judge, with performance comparable to the ratio-
nales from the strongest checkpoint of Con-J. This indicates that Con-J not only surpasses GPT-4o
in preference prediction performance but also generates rationales with similar effectiveness.

4.4 RATIONALES HELP CON-J BECOME LESS SUSCEPTIBLE TO BIASES IN THE DATASET.

Scalar models are known to be susceptible to biases in datasets, resulting in preference judgments
that reflect biases in the pattern of data rather than true human values. To investigate the suscepti-
bility of Con-J, we conduct a synthetic experiment that injects artificial bias into the data. We define
the degree of bias in training set Dtrain as γ. This indicates that the γ proportion of the data contains
unexpected biases that don’t necessarily reflect human value, while the rest 1 − γ of the data are
randomly sampled from the original training set.

We consider two widely studied biases: format bias and verbosity bias Park et al. (2024); Singhal
et al. (2023); Shen et al. (2023). For format bias, we use two different prompts to rewrite the pair of
answers (see prompt instructions in Table 8). Specifically, we rewrite the good answer with a more
verbal format and the bad answer with a more formal format with GPT-4o. For verbosity bias, we
follow existing practice Zheng et al. (2023) by asking GPT-4o to rephrase the good answer without
adding any new information and insert the rephrased text at the end of the original answer.

All experiments are conducted on a filtered Math dataset, where the filtering ensures that the solution
in the preferred answer is correct, while incorrect in the less preferred answer. In this scenario, the
format and verbosity of the answers should not be considered in the preference judgments as the
correctness of the solution is prioritized. We investigate the performance of Con-J, SM, and Con-J



Table 4: Example of rationales and binary preference generated by Con-J. We prompt GPT-4o to
annotate the correctness (ranging from 1 to 5) of the rationales and consistency between the predicted
preference and the rationale (ranging from 1 to 3).

Prompt input Rationale Preferred

C
re

at
io

n
(1

)

Question: On the theme of comprehensive rural revitalization, propose a
paper title.
Answer 1: Research on Strategic Pathways for Rural Revitalization from
a Multi-Collaborative Perspective.
Answer 2: Comprehensive Rural Revitalization: Deep Integration of
Strategies and Practices.

The second answer provides a broader
applicability and depth of description,
with a smoother and more natural con-
text than the first answer.
Correctness: 5, Consistency: 3

Answer
2

(correct)

M
at

h
(1

)

Question: Today is August 12, 2021. What was the date 30 days ago?
Answer 1: According to the given information, today is August 12, 2021,
so 30 days ago was July 13, 2021. Therefore, 30 days ago was July 13,
2021.
Answer 2: July 12, 2021.

The second answer does not provide
a detailed explanation, whereas the
first answer offers a detailed reasoning
process and uses correct date subtrac-
tion logic.
Correctness: 2, Consistency: 3

Answer
1

(incor-
rect)

M
at

h
(2

)

Question: Soldiers built a 2000-meter line. They averaged 350 meters
per day for the first 3 days. What is the required daily average for the
remaining 2 days?
Answer1: (2000−350×3)÷2 = 1400÷2 = 700 meters. Answer:
An average of 700 meters needs to be set up each day for the last two days.
Answer 2: (2000−350×3)÷2 = (2000−1050)÷2 = 950÷2 =
475 meters. Answer: 475 meters for the last two days.

The first answer is straightforward and
accurate, taking into account the total
distance that needs to be set up and
the known information; the second an-
swer offers a slightly simplified ex-
pression and the result is correct.
Correctness: 2, Consistency: 1

Answer
2

(correct)

C
od

e
(1

)

Question: Reverse the elements in an array and make each character in
the elements lowercase. planet arr = [‘Earth’, ‘Saturn’, ‘Mars’];
Answer 1: def reverse array(arr):; return arr[::-
1]; def lowercase array(arr):; return [x.lower() for
x in arr]; planet arr = [‘Earth’, ‘Saturn’, ‘Mars’];
print(reverse array(planet arr));print(lowercase array(planet arr));
Answer 2: planet arr = [‘Earth’, ‘Saturn’, ‘Mars’]; planet arr.reverse();
planet arr = [p.lower() for p in planet arr]; print(planet arr); This code
will first reverse the order of the elements in the ‘planet arr‘ array, and
then lowercase each character in each element. The resulting array will
be [‘mars’,‘saturn’,‘earth’].

The first answer provides a clearer
step-by-step solution to the problem
by achieving array reversal and lower-
case conversion through independent
functions, which makes the code more
modular. The second answer is more
concise and accurately meets the ques-
tion’s requirements by first reversing
the array and then converting it to low-
ercase.
Correctness: 3, Consistency: 1

Answer
1

(incor-
rect)

trained and evaluated without generating the rationales (see the prompt examples in Table 7) under
the injections of the addressed bias. We trained them on a biased dataset and tested their performance
on an original, test set Dgeneral

test without any modification, and a test set constructed by injecting a
contrary bias Dadversarial

test . The contrary bias involves applying the bias for preferred answers from
the training set to less preferred answers in the testing phase, and vice versa. The training used
the same learning rate as mentioned earlier. All models achieved an accuracy of over 99% on the
biased training dataset when γ = 1, indicating the models are thoroughly trained on the data and are
strongly influenced by the bias.

We present the experimental results in Figure 4(a-d). From Figure 4(a-d), we have the following
observations: (i) Con-J outperforms SM when trained with biased data. Intuitively, Con-J does not
train a value head from scratch; instead, it leverages the text generation capabilities of pre-trained
LLMs. This approach helps retain global knowledge about the task from pretraining and allows
it to extract useful judgment standards even from biased data. (ii) When tested on the adversarial
datasets, Con-J without rationales significantly underperforms Con-J when γ > 0.2 and γ > 0.33
for the format bias and the verbosity bias, respectively. The above observations indicate that Con-J
becomes more robust at learning from biased data through training with rationales. (iii) When tested
on general test sets, Con-J without rationales demonstrates comparable performance to Con-J with
rationales. Some existing research suggests that rationales or critics generated ahead of preference
judgments can facilitate Chain-of-Thought (CoT) reasoning and help the LLM make better judg-
ments Lee et al. (2024); Ankner et al. (2024); Ye et al. (2024); Zhang et al. (2024). A possible
explanation for the lack of a similar CoT effect in our data is that the CoT process is often already
embedded in the responses, making the CoT procedure for judgment potentially unnecessary.

4.5 CASE ANALYSIS OF CON-J

We present example judgments generated by Con-J in Table 4, covering three domains and illustrat-
ing both correct and incorrect preference predictions. For that cases of Creation (1) and Math (1),



there is high consistency between the rationale and the binary preference (the consistency scores
are 3). We observe that both the rationale and the preference prediction are correct in Creation (1)
while incorrect Math (1). Conversely, the consistency in the cases of Math (2) and Code (1) is rel-
atively low. In these cases, we find that the rationale does not reflect the most direct support for
preference prediction. For example, in the third example, the answers are compared based on their
format, while the key difference is that one of the answers involves an incorrect calculation and is
not involved in the rationales. This indicates that even if the model can make a correct judgment, it
may not necessarily be based on the correct rationale.

5 RELATED WORK

LLM alignment. The initial approach developed for aligning LLMs with human values was rein-
forcement learning from human feedback (RLHF) (Christiano et al., 2017; Liu et al., 2020). This
technique involves training a scalar reward model (RM) and then using reinforcement learning (RL)
to optimize a policy according to the RM. In recent years, a series of direct alignment from pref-
erence (DAP) works, such as DPO (Rafailov et al., 2024), SiLC (Zhao et al., 2023), and IPO Azar
et al. (2024), have gained popularity. Unlike RLHF, DAP methods directly update the LLM using
pairwise preference data, making the alignment simpler, and more stable. To scale the preference
datasets, it is common to train an external machine model from existing preference datasets (Hou
et al. (2024); Wu et al. (2024)). This online and scalable construction process enables DPO to be
deployed in an iterative setting (Xiong et al. (2024); Xu et al. (2023)) or online setting (Guo et al.
(2024)). Therefore, how to build an accurate external model for preference judgment is an important
problem.

LLM-as-a-judge. Instead of training a scalar model for preference judgment, employing LLMs as
a generative judge has been a promising alternative (Zheng et al., 2023; Ye et al., 2023). Efforts
have been made to train language models specialized in evaluations. For example, Li et al. (2023);
Kim et al. (2024) proposes constructing an instruction-tuning dataset by prompting GPT-4 and using
supervised fine-tuning (SFT) to train a pre-trained LLM as a generative judge. Zhang et al. (2024)
propose training the LLM by minimizing the SFT loss with a single “Yes” or “No”, along with a
rationale generated either by prompting Gemini 1.0 Pro or through algorithmic construction. Our
contribution to the existing research is that Con-J uses self-sampled contrastive judgments under the
supervision of preference data, allowing for more efficient data construction while achieving better
performance.

6 DISCUSSIONS AND CONCLUSIONS

We introduced Con-J, a novel approach that trains a generative judge by self-bootstrapped learning
from preference data. Con-J addresses the limitations of scalar reward models, including lack of
interpretability and susceptibility to dataset bias. Our experiments on commercial datasets across
Text Creation, Math, and Code domains, as well as publicly available benchmarks, demonstrate
the effectiveness of Con-J. Moreover, we show that the correctness of the rationales generated by
Con-J improves during learning from preference data. This enables Con-J not only to make accurate
judgments but also to provide reasonable explanations, potentially facilitating human-in-the-loop
supervision of LLM alignment. Finally, we found that Con-J is less susceptible to biases in datasets
compared to its variants without rationales and the scalar models.

As AI systems become more powerful, many suggest that they will reach the point at which human
are unable to easily and reliably assess the quality of their outputs (Casper et al., 2023). To address
this issue, using another AI to supervise itself is a viable solution; however, researchers suggest that
these methods may fail without human involvement (Shumailov et al., 2024). This paper contributes
to addressing this issue in two ways. On the one hand, Con-J can be used to supervise LLMs by
acting as a judge. At the same time, Con-J produces an explanation of its output that is legible to
humans or another trusted system. This indicates that we can spot any possible errors made by Con-
J. On the other hand, the training and construction of Con-J rely solely on preference data, which is
easier to acquire from human annotators than high-quality instruction tunning data. Furthermore, in
many cases humans often find it difficult to provide verbal reasons for their preference, the training



of Con-J could be integrated with human preference annotations, thereby enhancing the transparency
of the entire annotation process.

Several limitations of this work guide future directions including: (i) We demonstrate that preference
learning can enhance the model’s ability to generate correct rationales. Another unresolved and
intriguing question is whether enhancing the quality of rationales during the sampling process could
also improve the model’s preference prediction abilities. It is an important problem to enhance the
model’s ability not only to make accurate preference predictions but also to base those judgments
on correct reasoning. (ii) We demonstrated that Con-J can more effectively resist bias than SM in an
adversarial experiment. However, further analysis is needed to understand why Con-J outperforms
SM on complex, realistic datasets, and whether this is also related to bias. (iii) We suggest that Con-j
can potentially facilitate human collaboration through interpretable preference judgments for LLM
training. The design of such a pipeline is another interesting and valuable direction.

REFERENCES

Zachary Ankner, Mansheej Paul, Brandon Cui, Jonathan D Chang, and Prithviraj Ammanabrolu.
Critique-out-loud reward models. arXiv preprint arXiv:2408.11791, 2024.

Mohammad Gheshlaghi Azar, Zhaohan Daniel Guo, Bilal Piot, Remi Munos, Mark Rowland,
Michal Valko, and Daniele Calandriello. A general theoretical paradigm to understand learn-
ing from human preferences. In International Conference on Artificial Intelligence and Statistics,
pp. 4447–4455. PMLR, 2024.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn
Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless
assistant with reinforcement learning from human feedback. arXiv preprint arXiv:2204.05862,
2022.

Stephen Casper, Xander Davies, Claudia Shi, Thomas Krendl Gilbert, Jérémy Scheurer, Javier
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A APPENDIX

Table 5: An example of a prompt fed to the LLM to generate preference reward judgments, con-
sisting of a preamble (introduction and instructions describing the task), a question, and a pair of
candidate answers. The preamble is neutral and does not indicate which answer is better.

Preamble As an evaluation expert, given a question and its two possible answers, please
choose which answer best aligns with coherence, accuracy, coverage, and over-
all quality. Output your judgment in JSON format, where ”rationale” is your
explanation, and ”better answer” is an integer type of 1 or 2, for example,
{“rationale”: “your explanation”, “better answer”: 1}. Below are the question
and its candidate answers:

Question The volume of a rectangular prism is 96 cubic decimeters, and the base area is
16 square decimeters. What is its height in decimeters?

Answer 1 We can use the following formula to calculate the height h of the rectangular
prism: V = S \times h. Substitute the known values into the formula: 96 = 16
\times h; h = 6. Therefore, the height of the rectangular prism is 6 decimeters.

Answer 2 5. Height = Volume / Base Area = 96 / 16 = 5 decimeters.

Prompt As an evaluation expert, given a question and its two possible answers, please
choose which answer best aligns with coherence, accuracy, coverage, and
overall quality. Output your judgment in JSON format, where ”rationale” is
your explanation, and ”better answer” is an integer type of 1 or 2, for exam-
ple, {“rationale”: “your explanation”, “better answer”: 1}. Below are the
question and its candidate answers:
Question: The volume of a rectangular prism is 96 cubic decimeters, and the
base area is 16 square decimeters. What is its height in decimeters?
Answer 1: We can use the following formula to calculate the height h of the
rectangular prism: V = S \times h. Substitute the known values into the for-
mula: 96 = 16 \times h; h = 6. Therefore, the height of the rectangular prism
is 6 decimeters.
Answer 2: 5. Height = Volume / Base Area = 96 / 16 = 5 decimeters.



Table 6: Prompt template with preamble using correct or incorrect hints, where α, β are the ID
of correct and incorrect answers, respectively, {α, β} = {1, 2}, {{Question}}, {{Answer 1}},
{{Answer 2}} are the text content of the question, answer 1, and answer 2, respectively. When
the LLM does not output a valid JSON format as expected (e.g., “rationale”: “your explanation”,
“better answer”: α), we use an alternative prompt (rows 3-4) to prompt it again and insert its output
as the rationale into the template.

Prompt
with pream-
ble correct

As an evaluation expert, given a question and its two possible answers, please
choose which answer best aligns with coherence, accuracy, coverage, and
overall quality. Below are the question and its candidate answers:
Question: {{Question}}
Answer 1: {{Answer 1}}
Answer 2: {{Answer 2}}
Given that answer α is better than answer β, please provide the rationale.
Output your judgment in JSON format, where ”rationale” is your explanation,
and ”better answer” is an integer type of α, for example, {“rationale”: “your
explanation”, “better answer”: α}.

Prompt
with pream-
ble incorrect

As an evaluation expert, given a question and its two possible answers, please
choose which answer best aligns with coherence, accuracy, coverage, and
overall quality. Below are the question and its candidate answers:
Question: {{Question}}
Answer 1: {{Answer 1}}
Answer 2: {{Answer 2}}
Given that answer β is better than answer α, please provide the rationale.
Output your judgment in JSON format, where ”rationale” is your explanation,
and ”better answer” is an integer type of β, for example, {“rationale”: “your
explanation”, “better answer”: β}.

Prompt
with pream-
ble correct (al-
ternative)

As an evaluation expert, given a question and its two possible answers, com-
pare the answers according to their coherence, accuracy, coverage, and overall
quality. Below are the question and its candidate answers:
Question: {{Question}}
Answer 1: {{Answer 1}}
Answer 2: {{Answer 2}}
Given that answer α is better than answer β, please provide the rationale:

Prompt
with pream-
ble incorrect (al-
ternative)

As an evaluation expert, given a question and its two possible answers, com-
pare the answers according to their coherence, accuracy, coverage, and overall
quality. Below are the question and its candidate answers:
Question: {{Question}}
Answer 1: {{Answer 1}}
Answer 2: {{Answer 2}}
Given that answer β is better than answer α, please provide the rationale:



Table 7: Prompt template for forcing the generative LLM outputs only the binary judgment without
any rationales. {{Question}}, {{Answer 1}}, {{Answer 2}} are the text content of the question,
answer 1, and answer 2, respectively.

Prompt As an evaluation expert, given a question and its two possible answers,
please choose which answer best aligns with coherence, accuracy, coverage,
and overall quality. Output your judgment in JSON format in which ”bet-
ter answer” is an integer type of 1 or 2, for example, {“better answer”: 1}.
Do not include any additional explanations. Below are the question and its
candidate answers:
Question: {{Question}}
Answer 1: {{Answer 1}}
Answer 2: {{Answer 2}}



Table 8: Prompt template for transforming the answers into different formats.

Prompt for
rewriting the
answer into a
more verbal
format

You are someone who works on popularizing mathematical knowledge. Please
restate the following content in simpler, more accessible language without
changing the original meaning, affecting its length, or adding extra informa-
tion. Below is the input: {{Answer}}

Prompt for
rewriting the
answer into a
more formal
format

You are a researcher in the field of mathematics. Please restate the following
content using precise mathematical language without changing the original
meaning, affecting its length, or adding extra information. Below is the input:
{{Answer}}

Prompt for
rewriting the
answer to be
more verbose

Please summarize the input by listing the key points in a numbered format.
Below is the input: {{Answer}}



Table 9: Prompt template for scoring the rationales and judgments of Con-J.

##Background
Given below is a question and two corresponding answers:
Question: {{Question}}
Answer 1: {{Answer 1}}
Answer 2: {{Answer 2}}
A judge has assessed these two answers and judged which one is better. Here

are its judgment and the corresponding rationales:
{{Judgment}}
##Workflow and Scoring
Please analyze whether the judgment is correct and evaluate the rationale by

scoring them on (i) correctness and (ii) consistency with the binary judgment:
Correctness:
1: Completely incorrect, with obvious erroneous arguments.
2: Mostly incorrect, with some correct arguments.
3: Partially correct, with almost no errors.
4: Mostly correct.
5: Completely correct.
Consistency:
1: The emotional tone of the reasons is inconsistent with the final judgment.
2: The reasons have no clear emotional tone.
3: The emotional tone of the reasons is consistent with the final judgment.
##Formatting
Please return the results in JSON format, for example: “Judgment Correct-

ness”: “Correct”, “Rationale Correctness”: 4, ”Rationale Consistency”: 3,
where “Judgment Correctness” can be either “Correct” or “Incorrect”.



Algorithm 1 Constructing contrastive judgment pairs for Con-J

1: Input: π: a pre-trained LLM; a preference dataset D = {(q, a−, a+)i}Ni=1.
2: Output: E: a set of constrastive judgment pairs.
3: E = ∅
4: for (q, a−, a+)i ∈ D do
5: p = format(preamble, (q, a−, a+)i) ▷ Prompt construction with preamble
6: Get M(p) with repeated sampling ▷ Judgment generation with repeated sampling
7: M(p)+,M(p)− ← filter correct(M(p)),filter incorrect(M(p)) ▷ Selection with ground

truth preference
8: E = E ∪ {(jp, jn)|jp ∈M(p)+, jn ∈M(p)−}
9: pp, pn = format(preamble correct, (x, a−, a+)i), format(preamble incorrect, (x, a−, a+)i)

▷ Using preamble with correct or incorrect hint to construct prompt
10: Get M(pp),M(pn) with hint-driven sampling
11: E = E ∪ {(jp, jn)|jp ∈M(pp), jn ∈M(pn)}
12: end for
13: Return E
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